Problem Set #1
Plane Euclidean Geometry

1. (Triangle Geometry) In triangle ABC, $AB=AC$. Point P strictly between A and B such that $AP=PC=CB$. Find $\angle A$.

2. (Triangle Geometry) Triangle ABC has a right angle at C, $AC=3$ and $BC=4$. Triangle ABD has a right angle at A and $AD=12$. Points C and D are in opposite sides of \overline{AB}. The line through D parallel to \overline{AC} meets \overline{CB} extended at E. Find $\frac{DE}{DB}$.

3. (Circle Geometry) Triangle ABC is inscribed in a circle, and $\angle B = \angle C = 4\angle A$. Also B and C are adjacent vertices of a regular polygon of n sides in this circle. Find n.

4. (Circle Geometry) An acute isosceles triangle, ABC, is inscribed in a circle. Through B and C, tangents to the circle are drawn, meeting at point D. If $\angle ABC = \angle ACB = 2\angle D$, find $\angle A$ (in radians).

5. (Coordinate Geometry) In the xy-plane, consider the L-shaped region bounded by horizontal and vertical segments with vertices $(0,0)$, $(0,3)$, $(3,3)$, $(3,1)$, $(5,1)$, and $(5,0)$. Find the slope of the line passing through the origin that divides the area of this region exactly in half.

6. (Coordinate Geometry) If $ABCD$ is a 2×2 square, E is the midpoint of \overline{AB}, F is the midpoint of \overline{BC}, \overline{AF} and \overline{DE} intersect at I, and \overline{BD} and \overline{AF} intersect at H, find the area of quadrilateral $BEIH$.

7. (Triangle Inequality) A triangle with integral sides has perimeter 8. Find its area.

8. (Areas) The length of rectangle $ABCD$ is 5 inches and its width is 3 inches. Diagonal AC is divided into three equal segments by points E and F. Find the area of triangle BEF.

9. (Areas) An 8 by $2\sqrt{2}$ rectangle has the same center as a circle of radius 2. Find the area of the region common to both the rectangle and the circle.

10. (Law of Cosines) In a triangle with sides of length a, b, and c,

 \[(a + b + c)(a + b - c) = 3ab .\]

 Find the measure of the opposite angle to the side of length c.

Required Topics

Angles, triangles, and circle theorems (e.g. triangle inequality, Pythagorean Theorem, similar triangles, inscribed and central angles in a circle). Understanding of perimeters and areas. Coordinate geometry in the plane (e.g. distance formula, equation of a line). Trigonometry (e.g. trigonometric identities, law of sines, and law of cosines).

References & Resources

 http://www.studyworksonline.com/cda/explorations/main/0,,NAV2-21,00.html

 You can also go to http://www.studyworksonline.com, click on “Explorations” (upper menu) and then on “Interactive Geometry” (left menu).