Outline

- Programming and Final exams
 - VBA and MATLAB basics
 - Roots of equations
 - Matrix algebra and solution of simultaneous equations
 - Numerical differentiation
 - Interpolation
 - Regression
 - Quadrature
 - Numerical solution of ODEs

Programming Exam

- Can choose to use VBA or MATLAB
- Will have one relatively simple problem with two hours to get solution
 - Open book, notes, online help, but no internet searches for code
- Will have test cases with known solutions
 - Use test cases to verify program correctness
- Done with Excel workbook or commands from MATLAB command window

Programming Exam Rules

- Each student does own work and emails results to instructor
- No instructor help for programming
 - Can ask questions to clarify exam
 - Can get help for grave problems like computer crash
- Try to get as much done as possible
 - Describe future steps if you have not finished

Final Exam Reminder

- Monday, May 12, 8 to 10 pm, this room
- Closed book, no notes, no computer, no consultation, etc.
- Will be given necessary equations
 - If you think that some equation is missing ask and it will be provided
- Final will have same kinds of problems as midterm, with new algorithms mainly

Final Exam Problems

- Write simple VBA and MATLAB code (for general calculations or a given numerical algorithm)
- Given a numerical algorithm, evaluate a few steps with your calculator
- May be some short questions like how many data points does it take to fit a cubic polynomial or short exercises with matrices
Possible Numerical Algorithms

- Roots of equations, f(x) = 0, single equations only
- Simultaneous linear algebraic equations
- Interpolation
- Regression
- Numerical integration
- Numerical solution of Ordinary Differential Equations

Review VBA

- Option Explicit
- Dim and Const statements
- Expressions with operator precedence and replacement statements
 - Arithmetic, relational, logical and string operators
- Type conversion
 - Implicit as in MsgBox " x = " * x
 - Explicit with conversion functions like CDbl

Choice Statements

- The If statement
 - If <condition> Then
 - <statements to be executed if the condition is true>
 - End If
 - <Transfer control here if condition is false; normal transfer at end of if code>
- Alternative version for one statement in If
 - If <condition> Then <statement>

If – Else If Explained

- If any condition is true, the statements following the If or Else If are executed
- Once those statements are executed controls to the first statement after the End If
- Statements for only the first true condition are executed
- The Else block is optional
 - If no conditions are true those statements are executed
 - End If
 - <Execute here after any statements done>

Looping

- Count control loop repeats code a fixed number of time
- Conditional looping repeats while a condition is true or until a condition is false
- Both types of loops may be nested
- May use Exit For or Exit Do statements to exit loop before normal exit

Count Controlled Loop

For <counter> = <start> to <end>
 <statements>
 If Step not specified, <increment> = 1
Next <counter>
For <counter> = <start> to <end> _
 Step <increment>
 <statements>
Next <counter>
Statements in loop repeated nTimes = (<end> – <start>) /<increment> + 1
Loop not executed if nTimes <= 0
Count Controlled Examples

For k = 1 to 11 step 3
 msgBox k
Next k

Code at left computes e^x for $x = 1$ with relative error of 1×10^{-8}

Conditional Loop

<cond> is a condition (can be true or false)
<stmts> are statements executed in the loop (which should change the condition)

<table>
<thead>
<tr>
<th>Do While <cond> Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Until <cond> Loop</td>
</tr>
<tr>
<td>Do <stmts> Loop</td>
</tr>
<tr>
<td>Do <stmts> Loop Until <cond></td>
</tr>
</tbody>
</table>

Note tests before or after loop

Nested For Loops

• For loops used with arrays
• Nested for loops for 2D arrays

For k = n To 1 Step -1
 x(k) = a(n,n+1)
 For j = k+1 to n
 x(k) = x(k) - a(k,j) * x(j)
 Next j
Next k

Arrays

• Arrays can be visualized as data on an experimental variable
 – Could describe pressure data points mathematically as P_1, P_2, etc.
 – In VBA we can represent these data points as $P(1)$, $P(2)$, etc.
 – We call the numbers (1, 2, etc.) indices or subscripts
 • We can use constants or variables for the subscripts: $P(4)$, $P(k)$, where k has a value

Two-dimensional Arrays

Consider an experiment where you vary the current over six levels, the voltage over four levels and measure the efficiency, e, of an electromechanical device. The data for each combination of current and voltage can be represented as shown below

<table>
<thead>
<tr>
<th>I(1)</th>
<th>I(2)</th>
<th>I(3)</th>
<th>I(4)</th>
<th>I(5)</th>
<th>I(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(1)</td>
<td>e(1,1)</td>
<td>e(1,2)</td>
<td>e(1,3)</td>
<td>e(1,4)</td>
<td>e(1,5)</td>
</tr>
<tr>
<td>V(2)</td>
<td>e(2,1)</td>
<td>e(2,2)</td>
<td>e(2,3)</td>
<td>e(2,4)</td>
<td>e(2,5)</td>
</tr>
<tr>
<td>V(3)</td>
<td>e(3,1)</td>
<td>e(3,2)</td>
<td>e(3,3)</td>
<td>e(3,4)</td>
<td>e(3,5)</td>
</tr>
<tr>
<td>V(4)</td>
<td>e(4,1)</td>
<td>e(4,2)</td>
<td>e(4,3)</td>
<td>e(4,4)</td>
<td>e(4,5)</td>
</tr>
</tbody>
</table>
Using Arrays

• Arrays components are referenced by their subscripts
• This is often done in a For loop
For k = 0 to 100
 x(k) = sin(k * PI / 100)
Next k
• x is an array with 101 components giving sin(x) for 0 ≤ x ≤ π, with Δx = π/100

Two-Dimensional Arrays

• Use nested for loops
 – Use example of current and voltages
For k = 1 to 4
 For j = 1 to 6
 Power(k,j) = I(j) * V(k)
 Next j
Next k

• Recall table:
 - V was in rows
 - I was in columns
 - Power(k,j) is Power(row, column)
 - Are k and j indices correct?

Dynamic Arrays

• What if you do not know array size until program is actually running?
• Use Dim a() to tell compiler that a is an array then use ReDim with actual dimensions
Sub getArray(N as long) as Variant
 Dim x() as Double : ReDim X(1 to N)
• Can go from Dim a() as Double to any size ReDim: ReDim a(1 to 10, 6 to 12)

Passing Arrays to Procedures

• Declare array in argument list with parentheses to indicate array
Sub mine(A() as double)
 ‘No dim statement for A
 A(2,3) =
End Sub
Use this for any size array. Variant arrays do not need ()

• Calling program sets actual dimensions on array and uses only the following
Dim B(1 to 10, 1 to 6) as double
Call mine(B)

Determining Array Bounds

• The UBound and LBound functions determine the upper and lower bounds of unknown array dimensions
• For a two-dimensional array, A(m,k)
 – LBound(A,1) is the lower bound of m
 – UBound(A,1) is the upper bound of m
 – LBound(A,2) is the lower bound of k
 – UBound(A,2) is the upper bound of k

Worksheet Arrays to VBA

• Passed as a range of cells
• First step is to set a type variant variable equal to the input range variable
 – The variant variable is now an two-dimensional array
 – May have single row or single column, but is still a two-dimensional array
 – Lower bound is always one
 – Can use UBound to get sizes
Worksheet Array Example

```vba
Function getMean (Ain As Range) _
    As Double
Dim A as Variant
Dim sum As double, cells As Long, k As Long
Dim nRows As Long, nCols As Long, m As Long
A = Ain:
    nRows = UBound(A,1) : sum = 0
nCols = UBound(A, 2) : cells = nRows * nCols
For k = 1 To nRows
    For m = 1 To nCols
        sum = sum + A(k,m)
    Next m
Next k
getMean = sum / cells
End Function
```

Worksheet Array Example II

```vba
Dim sum As double, cells As Long, m As Long
Dim nRows As Long, nCols As Long, k As Long
A = Ain:
    nRows = UBound(A,1) : sum = 0
nCols = UBound(A, 2) : cells = nRows * nCols
For k = 1 to nRows
    For m = 1 to nCols
        sum = sum + A(k,m)
    Next m
Next k
getMean = sum / cells
End Function
```

VBA Array to Worksheet

- VBA steps to return array to worksheet
 - Declare the function type as Variant
 - In the function or sub declare a working array for calculations
 - Use application.caller for dimensions
 - Write the code for values in working array
 - At end of function set <function name> = <working array name>
- To use the function: select cells; enter function in formula bar; Cont+Shift+Enter

```vba
Function array2wks(<arguments>) As Variant
Dim userRows As Long
Dim userColumns As Long
Dim workArray() as Double
'Statements below determine rows and columns
userRows = Application.Caller.Rows.Count
userColumns = Application.Caller.Columns.Count
ReDim workArray(1 to userRows, 1 to userColumns)

array2wks = workArray
End Function
```

Strings

- Consider only variable length
- Use Dim str as String
- Use & or + as concatenation operator to join two strings
- Len(str) gives length of string
- Left, Right, and Mid give substrings in same manner as worksheet functions
- InStr function searches for substrings

Getting Programs to Work

- VBA detects syntax errors (one-line)
- Compilation (before execution) detects structure errors (more than one line)
- Programs will halt at many errors (like divide by zero)
- Programs will return errors like #NAME to worksheet instead of results
- Use test cases to make sure that a new program is working correctly
Getting Programs to Work

- Syntax errors: errors in single line
 - Line turns red after “completed” with optional error message and location
 - Select auto-syntax check
- Compilation errors: errors in program structure involving more than one line
 - E.g. If statement without following End If
 - E.g. Next statement without preceding For
 - Could get “incorrect” error message for nested structures (see next slide)

Misleading Error Message

- Error message when Next is omitted, but End If included to match If

Identified Run-time Errors

- Syntax/compilation usually, but not always, easy to remedy
- Some run-time errors will stop and allow debugging (Click “Debug” button)

Run-time Error Highlighted

- After clicking “Debug” on previous dialog
- Highlighted statement caused run-time error
 - Real error cause is values set for k and m are both zero
 - Need to trace back from error statement to error cause

#NAME Error

- This error may be returned by a UDF when the function cannot be found
 - It was never defined
 - It is located in a different workbook
 - There is a module with the same name
 - The name is misspelled in the call
 - Arguments in the function call do not match arguments in the function header
 - Function is not located in a module (located on code for worksheet or ThisWorkbook)
 - Private Function located in a different module

#VALUE Error

- Returned to worksheet when there is an execution error that VBA cannot trap
 - Often linked to attempts to exceed array bounds
 - To find such errors use the debugger repeated times to find the statement causing the error
 - Locate area in code where execution halts for no apparent reason
 - Find exact statement where this error occurs
 - Hover mouse to find “out-of-range” arrays or other possible errors
Incorrect Results

- Programs should always be tested with inputs whose solution is known
- If this solution is not found, use debugger to step through program to find errors
- Use worksheet to compute intermediate results to check against program values
 - Divided-difference table for polynomial interpolation as an example
- Worksheet formulas may have errors too

Debugging

- Debugger allows you to step through a program and see intermediate values
 - Useful to find location of errors
- Items to use in debugger
 - Breakpoints stop execution at certain points
 - Step-by-step execution
 - Intermediate and Watch windows
 - Hover mouse over variable to get its value
 - Change statement to be executed next

Useful Toolbar Icons

- Start execution (will stop at breakpoint)
- Halt execution
- Step to cursor
- Step into (F8)
- Step over
- Step out
- Quick Watch
- Add watch
- Comment and "uncomment" blocks of text
- Hover mouse over variable to get its value
- Change statement to be executed next

Hovering Mouse

- Can hover mouse over scalars to show values of variables
 - Does not work for whole arrays, but works for array components

Watch Window

- Use “Add Watch” to specify variables and Watch Type
- View variables in Watch Window

Help

- Help systems for Excel and VBA
- Search function does not always return what you are looking for
- If you know the keyword, type it, place the cursor in the keyword, and press F1
- Sometimes a Google search for “VBA <subjectYouAreInterestedIn>” works
MATLAB Review I

- Ways of performing commands
 - Command window
 - Answers may be suppressed with semicolon
 - Default answer variable is `ans`
 - Functions and scripts
 - Anonymous functions
 - Data entry commands for arrays
 - `X = [1 2 3; 4 5 6; 7 8 9; 10 11 12]`
 - Spaces between data on same row
 - Semicolons to start new row

MATLAB Review II

- Subarray commands `x(r1:r2, c1:c2)`
 - Use only : for complete row or column
- Other array definition: low:delta:high
 - Can omit delta if delta = 1
- Can get functions of arrays
 - `t = 0:pi/100:2*pi; y = sin(t); plot(t,y)`
- Transpose matrix: `A^T` in MATLAB is `A'`
 - Command `A'` gives

MATLAB Review III

- Matrix operations (+ - * / ^)
- Term-by-term operations (`+ - * ./ .^`)
- Valid operations between matrix, `X`, and scalar `a`: `a + X`, `a - X`, `a * X`, `a ./ X`, `X / a`
- Can create larger matrices from smaller ones if they are compatible
 - `C = [A B]` if `A` and `B` have same rows
 - `C = [A; B]` if `A` and `B` have same columns

Trajectory Function Example

```matlab
function [x, y] = traj(v0, theta, N)
%Computes frictionless trajectory
%Uses SI units (meters, seconds)
%V0 is initial speed in m/s
%theta is initial angle in degrees
%N is number of points computed

g = 9.80665; %gravity in m/s^2

% tMax = 2 * v0 * sind(theta) / g;
tMax = 2 * v0 * sind(theta) / g; % Miscalculation
% using tMax

% Vectorization - no loops

% Generate time vector
% t = 0:tMax/(N-1):tMax;
t = 0:tMax/(N-1):tMax;

% Calculate x and y values
x = v0*cosd(theta) * t;
y = v0*sind(theta) * t - g * t.^2/2;

% Plot the trajectory
plot(x, y);
end
```

MATLAB if Statements

- Use the following format
 - `if <expression1> <statements1>`
 - `elseif <expression2> <statements2>`
 - `<other elseif's possible here>`
 - `else <optional <statements> end`

Same structure as VBA but

- "Then" not used
- All keywords (if, elseif, else) in lower case
- Final statement is end, not endif

Using Your MATLAB Functions

- Used as any MATLAB Function
 - `>>v0 = 10;`
 - `>>theta = 60;`
 - `>>N = 100;`
 - `>>[x, y] = traj(v0, theta, N);`

- Can use only part of return variables
 - `>>x = traj(V0,theta,N)` returns x values in x
 - `>>= traj(v0,theta,N)` returns x values in ans

Cal State Northridge
MATLAB While Statement
• MATLAB has only one conditional looping command with a test before
 while <condition>
 <statements>
end
• The <statements> in the while loop continue to execute while the
 <condition> is true

MATLAB for Statement
• Similar to VBA For statement, but loop limits are a MATLAB array specification
 for <index> = <MATLAB array>
 <statements>
end
• Examples of for statements
 for T = [300, 500, 1000, 5000]
 for x = 0 : 0.01 : 2
 for k = 1 : 25
 (Same as 1:1:25)

Review Roots of Equations
• Write equation in form \(f(x) = 0 \)
• Methods solving \(f(x) = 0 \)
 – Bisection
 – Secant method
 – Newton’s Method
 – False position (regula falsi)
 – Successive substitution
 – May be given algorithm for other method
 and asked to apply it

Methods and Process
• Bisection and False Position require two initial guesses that bracket root
• Newton’s method requires one guess
• Secant method requires two guesses (do not have to bracket root)
• Different convergence conditions
 – Absolute error in \(\Delta x \) or \(f(x) \)
 – Relative error in \(\Delta x \)
 – Combination of above

Matrix Basics
• Define an \(m \) by \(n \) matrix as an array of
 with \(m \) rows and \(n \) columns
 \[
 A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34}
 \end{bmatrix}
 \]
 – Row, column, diagonal, unit, null, inverse
 and transpose matrices
• Matrix equality, addition, subtraction require same size matrices

General Matrix Multiplication
• For matrix multiplication, \(C = AB \)
 \[
 c_{ij} = \sum_{k=1}^{p} b_{ik} a_{kj}
 \]
 \(i = 1, n; \ j = 1, m \)
• Example
 \[
 A = \begin{bmatrix} 3 & 0 & -6 \\ 4 & -2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 \\ 1 & 2 \\ 6 & 1 \end{bmatrix}
 \]
 \[
 AB = \begin{bmatrix} (3(3) + 0(1) - 6(6)) & (3(4) + 0(2) - 6(1)) \\ (4(3) - 2(1) + 0(6)) & (4(4) - 2(2) + 0(1)) \end{bmatrix} = \begin{bmatrix} -27 & 6 \\ 10 & 12 \end{bmatrix}
 \]
From Equations to $\mathbf{Ax} = \mathbf{b}$

- Usual form for $3x + 7y - 3z = 8$
 $\mathbf{N} = 3$
 2 equations
 $8x + 6y - 2z = 14$

- An equation is a row in the $\mathbf{Ax} = \mathbf{b}$ format

Gaussian Elimination

- Solve the set of equations $2x - 4x - 26x = -34$ (i)
 on the right
 $7x + 3x + 8x = 14$ (ii)

- Subtract $-3/2$ times (i) from equation (ii)
 and $7/2$ times (i) from (iii)

- Gaussian Elimination II

- Result from first set of operations
 $2x - 4x - 26x = -34$
 $0x - 4x - 30x = -38$
 $0x + 17x + 99x = 133$

- Subtract $17/(-4)$ times
 (ii) from (iii)
 $2x - 4x - 26x = -34$
 $0x - 4x - 30x = -38$
 $0x + 0x - 57/2 x = -57/2$

- Final upper-triangular form

Back Substitution

- Final upper-triangular form
 $2x - 4x - 26x = -34$
 $-4x - 30x = -38$

- Solve third equation for x_3
 $x_3 = -57/2$
 $x_3 = 1$

- Solve second equation for x_2
 $x_2 = -38 + 30x_3$
 $x_2 = -38 + 30(1)$
 $x_2 = 2$

- Solve first equation for x_1
 $x_1 = -34 + 4x_2 + 26x_3$
 $x_1 = -34 + 4(2) + 26(1)$
 $x_1 = 0$

Solutions for $\mathbf{Ax} = \mathbf{b}$

- For a set of n equations in n unknowns
 - If $\text{Rank}(\mathbf{A}) = \text{Rank}([\mathbf{A} \mathbf{b}]) = n$ there is a unique solution $2x + y = 4$; $2x - y = 0$
 - If $\text{Rank}(\mathbf{A}) = \text{Rank}([\mathbf{A} \mathbf{b}]) < n$: an infinite number of solutions $x + y = 1$; $2x + 2y = 2$
 - If $\text{Rank}(\mathbf{A}) \neq \text{Rank}([\mathbf{A} \mathbf{b}])$ there are no solutions $x + y = 1$; $2x + 2y = 3$
 - Use Gaussian elimination to find Rank as number of nonzero rows

Numerical Differentiation

- Formulas have following properties
 - Type of derivative (first, second, third, etc.)
 - Direction of points used in the derivative, relative to the point of the derivative (forward, backward, central)
 - Order of the error: $O(h^n)$ is an nth order error (truncation error proportional to h^n)
 - Roundoff error occurs when h is so small that significant figures are lost
May 5, 2014

Some Derivative Expressions

\[f'_i = \frac{f_{i+1} - f_i}{h} + O(h) \]
\[f'_i = \frac{f_i - f_{i-1}}{h} + O(h) \]
\[f'_i = \frac{f_{i+2} - 4f_{i+1} + 3f_i}{2h} + O(h^2) \]
\[f'_i = \frac{-f_{i+2} + 4f_{i+1} - 3f_i}{2h} + O(h^2) \]
\[f'_i = \frac{f_{i+1} + f_{i-1} - 2f_i}{h^2} + O(h^2) \]

Note order of derivative, order of error, and direction (forward vs. backward)

More Derivative Expressions

\[f'' = \frac{2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3}}{h^2} + O(h^2) \]
\[f' = \frac{-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}}{12h} + O(h^4) \]
\[f'' = \frac{-f_{i+2} + 16f_{i+1} - 30f_i + 16f_{i-1} - f_{i-2}}{12h^2} + O(h^4) \]

- What is sum of coefficients in numerator for each expression?
- Is there a reason for this?

Interpolation

- Given a table of data, \((x_i, y_i)\) estimate a value of \(y\) for an \(x\) value not in the table
- Use \(N+1\) table \((x_i, y_i)\) points for \(N\)th-order polynomial
- Pick points that surround the value of \(x\) for which the polynomial is to be evaluated
- Get Newton polynomial from divided difference table

Divided Difference Example

\[
\begin{align*}
0 & \quad 0 & \quad \leftarrow a_0 \\
10 & \quad 10 & \quad \leftarrow a_1 \\
20 & \quad 40 & \quad \leftarrow a_2 \\
30 & \quad 100 & \quad \leftarrow a_3 \\
\end{align*}
\]

Divided Difference Table

\[
\begin{array}{|c|c|c|}
\hline
x_i & y_i & \text{Difference} \\
\hline
0 & 0 & \leftarrow a_0 \\
10 & 10 & \leftarrow a_1 \\
20 & 40 & \leftarrow a_2 \\
30 & 100 & \leftarrow a_3 \\
\hline
\end{array}
\]

Divided Difference Example II

- Divided difference table gives \(a_0 = 0\), \(a_1 = 1\), \(a_2 = 0.1\), and \(a_3 = 1/600\)
- Polynomial \(p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)\)
 \(= 0 + 1(x - 0) + 0.1(x - 0)(x - 10) + (1/600)(x - 0)(x - 10)(x - 20) = x + 0.1x(x - 10) + (1/600)x(x - 10)(x - 20)\)
- Check \(p(30) = 30 + 0.1(30)(20) + (1/600)(30)(20)(10) = 30 + 60 + 10 = 100\) (Correct!)
Linear Regression

- Seeks approximate linear relationship among data set \((x_i, y_i) \)
- Fit equation: \(\hat{y}_i = a + bx_i \)
- Notation \(\hat{y}_i \) indicates approximate value, which may be different from data \(y_i \)
- Equations for \(a \) and \(b \) based on minimizing sum of squares of differences between actual and approximate data
 \[\sum (y_i - \hat{y}_i)^2 \rightarrow \text{Minimum} \]

Confidence Limits

- \(R^2 \) value gives overall measure of fit
 \(- 0 \leq R^2 \leq 1 \)
 - Confidence limits for the regression parameters \(a \) and \(b \) based on t statistic and user-specified confidence limit \(1 - \alpha \)
 - Typically choose \(\alpha = .05 \) for 95% confidence
 \[a \pm t_{\alpha/2, N-k} \left(\frac{1}{N} \sum (x_i - \bar{x})^2 \right)^{1/2} \]
 \[b \pm t_{\alpha/2, N-k} \left(\frac{1}{N} \sum (x_i - \bar{x})^2 \right)^{1/2} \]

More Equations to be Used

- Compute estimated \(y \) values
 \[\hat{y}_m = b_0 + \sum_{j=1}^{K} b_j x_{jm} \]
- Compute the \(R^2 \) value
 \[R^2 = 1 - \left(\frac{\sum_{m=0}^{N-1} (y_m - \hat{y}_m)^2}{\sum_{m=0}^{N-1} y_m^2} \right) - N \left(\frac{\bar{y}}{s^2} \right)^2 \]

Equations for \(a \) and \(b \)

- Substitute equation for \(a \) into equation for \(b \) (both copied below) and solve for \(b \)
 \[a = \frac{\sum y_i - b \sum x_i}{N} \]
 \[b = \frac{N \sum x_i y_i - \left(\sum x_i \right) \left(\sum y_i \right)}{N \sum x_i^2 - \left(\sum x_i \right)^2} \]
 \[= \frac{\sum x_i y_i - N(\bar{x}\bar{y})}{\sum x_i^2 - N(\bar{x})^2} \]
- First solve for \(b \) then solve for \(a \)
 - Can set \(a = 0 \) to force line through origin
- Can use equations with all sums or means

Multivariate Linear Regression

- In general we can have \(K \) predictive variables, \(x_1 \) to \(x_K \)
- General model equation:
 \[y = b_0 + \sum_{j=1}^{K} b_j x_j \]
- How do we represent the data?
 - Each data set consists of one value of \(y \) and one value for each of the \(x \) variables
 - For data set \(m \), we can call the value of \(y \), \(y_m \), and we can call the value of \(x_i \) for data set \(m \) \(x_{jm} \)
 - Multivariate analysis finds coefficients \(b_0 \) to \(b_K \)
 - Each coefficient has standard error (times t statistic = confidence interval)

Numerical integration formulas

- Trapezoid Rule
 \[I = \int_a^b f(x) \, dx = T + E = h \left[f_0 + f_N + \sum_{i=1}^{N-1} f_i \right] + O(h^2) \]
- Simpson’s (1/3) rule (even \(N \) only)
 \[I = \int_a^b f(x) \, dx = S + E = \frac{h}{3} \left[f_0 + f_N + 4 \sum_{i=2,4,6} f_i + 2 \sum_{i=3,5,7} f_i \right] + O(h^4) \]
- Basic definitions of step size, \(h \), number of intervals, \(N \),
 \[x_0 = a, \ x_N = b, \ f_k = f(a + kh) \]
 \[x_i = a + k \frac{N}{h} \]
Richardson Extrapolation

- Have numerical expression, F, for two different step sizes h and kh
 - Call these F(h) and F(kh)
 - These expressions have a lead error term with order n, O(h^n) (error proportional to h^n)
 - Can get higher order expression by using Richardson Extrapolation formula
 - Typically pick k > 1, but it could be < 1 so long as formula is consistently applied
 \[
 RE = \frac{k^n F(h) - F(kh)}{k^n - 1} \]

Numerical ODE Solution

- Solve initial value problem, dy/dx = f(x,y) (known) with y(x_0) = y_0
 - Use a finite difference grid: x_{i+1} - x_i = h_{i+1}
 - Replace derivative by finite-difference approximation: dy/dx ≈ (y_{i+1} - y_i) / (x_{i+1} - x_i) = (y_{i+1} - y_i) / h_{i+1}
 - Derive a formula to compute \(f_{avg} \), the average value of f(x,y) between \(x_i \) and \(x_{i+1} \)
 - Replace dy/dx = f(x,y) by \((y_{i+1} - y_i) / h_{i+1} = f_{avg} \)
 - Repeatedly compute \(y_{i+1} = y_i + h_{i+1} f_{avg} \)

Order of ODE Methods

- Local error is error after one step when the initial conditions are known exactly
- Global error is the error after more than one step
- For an nth-order local error, the global error has an order of n – 1
- The global error is the more important error which is used to describe a method

Review Notation and Order

- \(x_i \) is independent variable
- \(y_i \) is numerical solution at \(x = x_i \)
- \(f_i \) is derivative found from \(x_i \) \(y_i \): \(f_i = f(x_i, y_i) \)
- \(y(x) \) is the exact value of \(y \) at \(x = x_i \)
- \(f(x,y(x)) \) is the exact derivative
- \(e_i = y(x_i) - y_i \) = local truncation error
- \(E_i = y(x_i) - y_i \) = global truncation error
- If \(e \) is \(O(h^n) \), then \(E \) is \(O(h^{n-1}) \)

Review Simple Methods

- Euler: \(y_{i+1} = y_i + h f_i \)
 - First order
- Huen’s method (second order)
 \[
 y_{i+1} = y_i + h f_i + \frac{h}{2} \left(f_{i+1} + f_i \right) \]
 \[
 x_{i+2} = x_i + h \]
- Modified Euler method (second order)
 \[
 \begin{align*}
 y_{i+1/2} &= y_i + \frac{h_{i+1}}{2} f(x_i, y_i) \\
 x_{i+1/2} &= x_i + \frac{h_{i+1}}{2} \\
 y_{i+1} &= y_i + h_{i+1} f \left(x_{i+1/2}, y_{i+1/2} \right) \\
 x_{i+1} &= x_i + h_{i+1}
 \end{align*}
 \]

Romberg Integration

- General forms for initial \(T_{k0} \) and subsequent \(T_{km} \)
 \[
 T_{km} = 4^m T_{m+1} - T_{m} - h_{m+1} \quad m = 0, \ldots, k; \quad all \; k
 \]
Review 4th Order Runge-Kutta

- Uses four derivative evaluations per step
 \[y_{i+1} = y_i + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \]
 \[x_{i+1} = x_i + h i_{i+1} \]
 \[k_1 = h i f (x_i, y_i) \]
 \[k_2 = h i f \left(x_i + \frac{h i}{2}, y_i + \frac{k_1}{2} \right) \]
 \[k_3 = h i f \left(x_i + \frac{h i}{2}, y_i + \frac{k_2}{2} \right) \]
 \[k_4 = h i f (x_i + h i, y_i + k_3) \]

Example

- Two masses joined by a spring/damper
- Original ODEs for each mass
- Define velocities \(\frac{dx_1}{dt} = v_1 \), \(\frac{dx_2}{dt} = v_2 \)
- Rewrite original ODEs using velocities

Example Continued

- Replace \(x_1, x_2, v_1, v_2 \) in equations below by \(y_1, y_2, y_3, y_4 \)
- Result is standard-form system: \(\frac{dy_1}{dt} = f_1 \)
- Many different ODE Algorithms
- Systems of ODEs
- ODE Systems

ODE Algorithms

- Many different ones, with different types
 - Multistep vs. single-step
 - Implicit vs. explicit
 - Step-size adjustment for better accuracy with fewer operations
 - Prefer higher-order algorithms
 - Special algorithms for stiff systems (wide variation in time constants)
 - Final could give new algorithm and ask you to take 2-3 steps with calculator