Note: This syllabus is for the lab portion of the course only.

Instructor: James Flynn

Office: In lab JD1536

Office Hours: TuTh 1P – 2P or during lab, or by appointment
Email: james.flynn@csun.edu
Home Page: http://www.csun.edu/~jaf35230
Prerequisite: ECE 450 and ECE 460 (with C or better)
Lab Manual: *** Lab Manual is being revised. Experiments will be made available on my website or distributed in class. DO NOT PURCHASE THE LAB MANUAL AT THE BOOKSTORE.

Grading: 11 Lab Reports on a ten point system. Two points for spelling, grammar and eight points for the report content. Lab reports are due at the next lab session following the performance of the experiment in the lab. Late reports will not be accepted. +/- grading will be used.

PRELAB: The prelab MUST be done before the lab. If a group has not completed the prelab, they will be required to leave the lab until the prelab is completed. They will then be required to make up any lost lab time on their own.

Students will work in teams on most experiments. However, some experiments will be performed individually and each student will be required to turn his/her own lab report. These experiments will be announced at least one week in advance.

Each student's grade will be based upon his/her own work. Any student found cheating on any graded material (whether in class or take home) will not be considered to have met the basic requirements of this course and thus will receive the grade of F. Cheating will also result in the appropriate disciplinary action being taken.

Exams: No exams will be given in this lab.

Drops: No student will be allowed to drop this course after the third week of class.

Relationship to Electrical and Computer Engineering Program Outcomes: This course supports the achievement of the following outcomes:
(a) An ability to apply knowledge of mathematics, science, and engineering to the analysis of electrical and electronic engineering problems
(c) An ability to design systems which include hardware and/or software components.
(e) An ability to identify, formulate and solve engineering problems.
(i) A recognition of the need for and an ability to engage in life-long learning
(k) An ability to use modern engineering techniques for analysis and design
(m) An ability to analyze and design complex devices and systems containing hardware and software components.
(n) A knowledge of advanced mathematics related to electrical engineering, including differential equations, linear algebra, complex variables, and discrete math.