Rachel Carson
The Obligation to Endure
(1962)

Before she took up the problem of chemical pesticides in Silent Spring, Rachel Carson (1907–1964) was already a respected scientist and a best-selling author. After earning a master's degree in zoology from Johns Hopkins University in 1932, she spent her early career as an aquatic biologist with the U.S. Bureau of Fisheries and its later incarnation as the Fish and Wildlife Service. In 1949, she rose to the position of chief editor of publications for the Fish and Wildlife Service and published three books about the ocean: Under the Sea-Wind (1941), The Sea Around Us (1951), and The Edge of the Sea (1955). The second of these books won the National Book Award and sold so many copies that Carson was able to give up her job and devote her time to writing.

With the publication of her most famous work, Silent Spring, Carson took on the unfamiliar role of social activist. The book began as a magazine article about the environmental impact of pesticides, especially of the compound dichlorodiphenyl-trichloroethane, better known as DDT. During and after World War II, DDT had been used throughout the world to control insects, remove disease threats, and increase food production. Carson traced the poisonous effects of DDT and other pesticides through the ecosystem, beginning with plants and insects and moving swiftly to fish, birds, wildlife, domestic animals, and finally to people, for whom Carson argued, DDT was a carcinogen.

When the book was published, the chemical pesticide industry launched a major counterstrike aimed at discrediting Carson. Despite their attack, the book became a phenomenal best seller and caused millions of Americans to reevaluate their faith in technology, scientific progress, and the role of government in protecting their interests.

Carson died of breast cancer in 1964 before she could see the effect that her work had on the world. In 1972, largely because of Silent Spring, the Environmental Protection Agency banned the use of DDT. In 1980, Carson was posthumously awarded the Presidential Medal of Freedom. And in 1999, the Modern Library Editorial Board ranked Silent Spring as one of the most important nonfiction books of the twentieth century.

Carson’s accomplishment in Silent Spring, chapter 2 of which follows, goes beyond exposing the dangers of pesticides. The portrait that she created of a deeply interconnected natural world, where changes to one species have far-reaching, unforeseen consequences for the entire ecological system, struck a deep chord with her readers and even changed their perception of nature. Today, many consider the
publication of *Silent Spring* to mark the beginning of the modern environmental movement.

Carson’s claim about the dangers of chemicals is primarily supported by facts and statistics. She links together a series of historical and scientific facts to focus readers’ attention on the negative consequences of using chemicals that most people saw only in terms of their positive effect.

The history of life on earth has been a history of interaction between living things and their surroundings. To a large extent, the physical form and the habits of the earth’s vegetation and its animal life have been molded by the environment. Considering the whole span of earthly time, the opposite effect, in which life actually modifies its surroundings, has been relatively slight. Only within the moment of time represented by the present century has one species—man—acquired significant power to alter the nature of his world.

During the past quarter century this power has not only increased to one of disturbing magnitude but it has changed in character. The most alarming of all man’s assaults upon the environment is the contamination of air, earth, rivers, and sea with dangerous and even lethal materials. This pollution is for the most part irrecoverable; the chain of evil it initiates not only in the world that must support life but in living tissues is for the most part irreversible. In this now universal contamination of the environment, chemicals are the sinister and little-recognized partners of radiation in changing the very nature of the world—the very nature of its life. Strontium 90, released through nuclear explosions into the air, comes to earth in rain or drifts down as fallout, lodges in soil, enters into the grass or corn or wheat grown there, and in time takes up its abode in the bones of a human being, there to remain until his death. Similarly, chemicals sprayed on croplands or forests or gardens lie long in soil, entering into living organisms, passing from one to another in a chain of poisoning and death. Or they pass mysteriously by underground streams until they emerge and, through the alchemy of air and sunlight, combine into new forms that kill vegetation, sicken cattle, and work unknown harm on those who drink from once pure wells. As Albert Schweitzer has said, “Man can hardly even recognize the devils of his own creation.”

It took hundreds of millions of years to produce the life that now inhabits the earth—eons of time in which that developing and evolving and diversifying life reached a state of adjustment and balance with its surroundings. The environment, rigorously shaping and directing the life it supported, contained elements that were

---

1. Albert Schweitzer: German-Alsatian theologian, philosopher, music scholar, and physician (1875–1965), who won the Nobel Peace Prize in 1952 for his lifelong devotion to providing medical services in Africa.
hostile as well as supporting. Certain rocks gave out dangerous radiation; even within
the light of the sun, from which all life draws its energy, there were short-wave radi-
ations with power to injure. Given time—time not in years but in millennia—life
adjusts, and a balance has been reached. For time is the essential ingredient; but in
the modern world there is no time.

The rapidity of change and the speed with which new situations are created fol-
low the insidious and heedless pace of man rather than the deliberate pace of nature.
Radiation is no longer merely the background radiation of rocks, the bombardment
of cosmic rays, the ultraviolet of the sun that have existed before there was any life
on earth; radiation is now the unnatural creation of man's tampering with the atom.
The chemicals to which life is asked to make its adjustment are no longer merely the
calcium and silica and copper and all the rest of the minerals washed out of the rocks
and carried in rivers to the sea; they are the synthetic creations of man's inventive
mind, brewed in his laboratories, and having no counterparts in nature.

To adjust to these chemicals would require time on the scale that is nature's; it
would require not merely the years of a man's life but the life of generations. And
even this, were it by some miracle possible, would be futile, for the new chemicals
come from our laboratories in an endless stream; almost five hundred annually find
their way into actual use in the United States alone. The figure is staggering and its
implications are not easily grasped—500 new chemicals to which the bodies of men
and animals are required somehow to adapt each year, chemicals totally outside the
limits of biologic experience.

Among them are many that are used in man's war against nature. Since the mid-
1940's over 200 basic chemicals have been created for use in killing insects, weeds,
rodents, and other organisms described in the modern vernacular as "pests"; and they
are sold under several thousand different brand names.

These sprays, dusts, and aerosols are now applied almost universally to farms,
gardens, forests, and homes—nonselective chemicals that have the power to kill
every insect, the "good" and the "bad," to still the song of birds and the leaping
of fish in the streams, to coat the leaves with a deadly film, and to linger on in
soil—all this though the intended target may be only a few weeds or insects. Can
anyone believe it is possible to lay down such a barrage of poisons on the surface
of the earth without making it unfit for all life? They should not be called "insect-
icides," but "biocides."

The whole process of spraying seems caught up in an endless spiral. Since DDT
was released for civilian use, a process of escalation has been going on in which ever
toxic materials must be found. This has happened because insects, in a tri-
umphant vindication of Darwin's principle of the survival of the fittest, have evolved
super races immune to the particular insecticide used, hence a deadlier one has always
to be developed—and then a deadlier one than that. It has happened also because,
for reasons to be described later, destructive insects often undergo a "flareback," or
resurgence, after spraying, in numbers greater than before. Thus the chemical war is never won, and all life is caught in its violent crash.

Along with the possibility of the extinction of mankind by nuclear war, the central problem of our age has therefore become the contamination of man’s total environment with such substances of incredible potential for harm—substances that accumulate in the tissues of plants and animals and even penetrate the germ cells to shatter or alter the very material of heredity upon which the shape of the future depends.

Some would-be architects of our future look toward a time when it will be possible to alter the human germ plasm by design. But we may easily be doing so now by inadvertence, for many chemicals, like radiation, bring about gene mutations. It is ironic to think that man might determine his own future by something so seemingly trivial as the choice of an insect spray.

All this has been risked—for what? Future historians may well be amazed by our distorted sense of proportion. How could intelligent beings seek to control a few unwanted species by a method that contaminated the entire environment and brought the threat of disease and death even to their own kind? Yet this is precisely what we have done. We have done it, moreover, for reasons that collapse the moment we examine them. We are told that the enormous and expanding use of pesticides is necessary to maintain farm production. Yet is our real problem not one of overproduction? Our farms, despite measures to remove acreages from production and to pay farmers not to produce, have yielded such a staggering excess of crops that the American taxpayer in 1962 is paying more than one billion dollars a year as the total carrying cost of the surplus-food storage program. And is the situation helped when one branch of the Agriculture Department tries to reduce production while another states, as it did in 1958, “It is believed generally that reduction of crop acreages under provisions of the Soil Bank will stimulate interest in use of chemicals to obtain maximum production on the land retained in crops.”

All this is not to say there is no insect problem and no need of control. I am saying, rather, that control must be geared to realities, not to mythical situations, and that the methods employed must be such that they do not destroy us along with the insects.

The problem whose attempted solution has brought such a train of disaster in its wake is an accompaniment of our modern way of life. Long before the age of man, insects inhabited the earth—a group of extraordinarily varied and adaptable beings. Over the course of time since man’s advent, a small percentage of the more than half a million species of insects have come into conflict with human welfare in two principal ways: as competitors for the food supply and as carriers of human disease.

Disease-carrying insects become important where human beings are crowded together, especially under conditions where sanitation is poor, as in time of natural disaster or war or in situations of extreme poverty and deprivation. Then control of
some sort becomes necessary. It is a sobering fact, however, as we shall presently see, that the method of massive chemical control has had only limited success, and also threatens to worsen the very conditions it is intended to curb.

Under primitive agricultural conditions the farmer had few insect problems. These arise with the intensification of agriculture—the devotion of immense acreages to a single crop. Such a system set the stage for explosive increases in specific insect populations. Single-crop farming does not take advantage of the principles by which nature works; it is agriculture as an engineer might conceive it to be. Nature has introduced great variety into the landscape, but man has displayed a passion for simplifying it. Thus he undoes the built-in checks and balances by which nature holds the species within bounds. One important natural check is a limit on the amount of suitable habitat for each species. Obviously then, an insect that lives on wheat can build up its population to much higher levels on a farm devoted to wheat than on one in which wheat is intermingled with other crops to which the insect is not adapted.

The same thing happens in other situations. A generation or more ago, the towns of large areas of the United States lined their streets with the noble elm tree. Now the beauty they hopefully created is threatened with complete destruction as disease sweeps through the elms, carried by a beetle that would have only limited chance to build up large populations and to spread from tree to tree if the elms were only occasional trees in a richly diversified planting.

Another factor in the modern insect problem is one that must be viewed against a background of geologic and human history: the spreading of thousands of different kinds of organisms from their native homes to invade new territories. This worldwide migration has been studied and graphically described by the British ecologist Charles Elton in his recent book The Ecology of Invasions. During the Cretaceous Period, some hundred million years ago, flooding seas cut many land bridges between continents and living things found themselves confined in what Elton calls “colossal separate nature reserves.” There, isolated from others of their kind, they developed many new species. When some of the land masses were joined again, about 15 million years ago, these species began to move out into new territories—a movement that is not only still in progress but is now receiving considerable assistance from man.

The importation of plants is the primary agent in the modern spread of species, for animals have almost invariably gone along with the plants, quarantine being a comparatively recent and not completely effective innovation. The United States Office of Plant Introduction alone has introduced almost 200,000 species and varieties of plants from all over the world. Nearly half of the 180 or so major insect enemies of plants in the United States are accidental imports from abroad, and most of them have come as hitchhikers on plants.

In new territory, out of reach of the restraining hand of the natural enemies that kept down its numbers in its native land, an invading plant or animal is able to
become enormously abundant. Thus it is no accident that our most troublesome insects are introduced species.

These invasions, both the naturally occurring and those dependent on human assistance, are likely to continue indefinitely. Quarantine and massive chemical campaigns are only extremely expensive ways of buying time. We are faced, according to Dr. Elton, "with a life-and-death need not just to find new technological means of suppressing this plant or that animal"; instead we need the basic knowledge of animal populations and their relations to their surroundings that will "promote an even balance and damp down the explosive power of outbreaks and new invasions."

Much of the necessary knowledge is now available but we do not use it. We train ecologists in our universities and even employ them in our governmental agencies but we seldom take their advice. We allow the chemical death rain to fall as though there were no alternative, whereas in fact there are many, and our ingenuity could soon discover many more if given opportunity.

Have we fallen into a mesmerized state that makes us accept as inevitable that which is inferior or detrimental, as though having lost the will or the vision to demand that which is good? Such thinking, in the words of the ecologist Paul Shepard, "idealizes life with only its head out of water, inches above the limits of toleration of the corruption of its own environment... Why should we tolerate a diet of weak poisons, a home in insipid surroundings, a circle of acquaintances who are not quite our enemies, the noise of motors with just enough relief to prevent insanity? Who would want to live in a world which is just not quite fatal?"

Yet such a world is pressed upon us. The crusade to create a chemically sterile, insect-free world seems to have engendered a fanatic zeal on the part of many specialists and most of the so-called control agencies. On every hand there is evidence that those engaged in spraying operations exercise a ruthless power. "The regulatory entomologists... function as prosecutor, judge and jury, tax assessor and collector and sheriff to enforce their own orders," said Connecticut entomologist Neely Turner. The most flagrant abuses go unchecked in both state and federal agencies.

It is not my contention that chemical insecticides must never be used. I do contend that we have put poisonous and biologically potent chemicals indiscriminately into the hands of persons largely or wholly ignorant of their potentials for harm. We have subjected enormous numbers of people to contact with these poisons, without their consent and often without their knowledge. If the Bill of Rights contains no guarantee that a citizen shall be secure against lethal poisons distributed either by private individuals or by public officials, it is surely only because our forefathers, despite their considerable wisdom and foresight, could conceive of no such problem.
I contend, furthermore, that we have allowed these chemicals to be used with little or no advance investigation of their effect on soil, water, wildlife, and man himself. Future generations are unlikely to condone our lack of prudent concern for the integrity of the natural world that supports all life.

There is still very limited awareness of the nature of the threat. This is an era of specialists, each of whom sees his own problem and is unaware of or intolerant of the larger frame into which it fits. It is also an era dominated by industry, in which the right to make a dollar at whatever cost is seldom challenged. When the public protests, confronted with some obvious evidence of damaging results of pesticide applications, it is fed little tranquilizing pills of half truth. We urgently need an end to these false assurances, to the sugar coating of unpalatable facts. It is the public that is being asked to assume the risks that the insect controllers calculate. The public must decide whether it wishes to continue on the present road, and it can do so only when in full possession of the facts. In the words of Jean Rostrand,2 “The obligation to endure gives us the right to know.”

Understanding the Text

1. What “power” have human beings recently acquired that, according to Rachel Carson, makes the current time period unique in the history of life on Earth?

2. What does Carson mean by “in the modern world there is no time”?

3. What happens when insects adapt to pesticides in their environment? Could any pesticide, theoretically, not result in an increased tolerance for that pesticide among insects? Why or why not?

4. What arguments in favor of pesticide use does Carson anticipate? How does she build responses to these arguments into her treatment of the issues?

5. What role does single-crop farming play in the rise of insect populations? Why is it dangerous, in Carson’s view, to limit diversity in specific natural areas?

6. Which of the dangers and mysteries of pesticide use does Carson object to most?

Making Connections

1. How do large increases in human populations create conditions in which insects and other forms of life must be controlled? How does Malthus anticipate these kinds of problems in his “Essay on the Principle of Population” (p. 324)?