Statistics, Student Solutions Manual: From Data to Decision [Paperback]
Ann E. Watkins (Author), Richard L. Scheaffer (Author), George W. Cobb (Author)
No customer reviews yet. Be the first.
Price: $35.00 & this item ships for FREE with Super Saver Shipping. Details
In Stock.
Ships from and sold by Amazon.com. Gift-wrap available.
Only 1 left in stock--order soon (more on the way).
Want it delivered Thursday, September 16? Order it in the next 23 hours and 30 minutes, and choose One-Day Shipping at checkout. Details
6 new from $33.25 1 used from $35.95
Join Amazon Student and get FREE Two-Day Shipping for one year with Amazon Prime shipping benefits.
5.1 Models of random behavior

Outcome: Result or answer obtained from a chance process.

Event: Collection of outcomes.

Probability: Number between 0 and 1 (0% and 100%). It tells how likely it is for an outcome or event to happen.

- \(P = 0 \) The event cannot happen.
- \(P = 1 \) The event is certain to happen.
Where do probabilities come from?

Observed data (long-run relative frequencies)

For example, observation of thousands of births has shown that about 51% of newborns are boys.

You can use these data to say that the probability of the next newborn being a boy is about 0.51.
Where do probabilities come from?

Symmetry (equally likely outcomes)

If we flip a fair coin, both sides are equally likely to come up.

Relying on symmetry, it is reasonable to think that heads and tails are equally likely.

So the probability of heads is 0.5.
Where do probabilities come from?

Subjective estimates

What’s the probability that you’ll get an A in this statistics class? That’s a reasonable, everyday kind of question, and the use of probability is meaningful, but you can’t gather data or list equally likely outcomes.

However you can make a subjective judgement
Models of Random behavior

If the chance of getting rain is 30%,
The chance of not getting rain is 70%

The corresponding probabilities are 0.3 and 0.7

If the probability of having rain is $P(A)$
What is the probability of NOT getting rain?
Models of Random behavior

If the chance of getting rain is 30%,
The chance of not getting rain is 70%

The corresponding probabilities are 0.3 and 0.7

If the probability of having rain is $P(A)$
What is the probability of NOT getting rain?

$$1 - P(A)$$

$A =$ getting rain $\quad P(A) = 0.3$

P of not getting rain $= 1 - P(A) = 0.7$
Models of Random behavior

A is the event (getting rain)

P(A) is its associated probability (0.3)

1 - P(A) is the probability of event A NOT HAPPENING (0.7)

Sometimes we call the latter P(not A)

\[P(\text{not } A) = 1 - P(A) \]

The event of A not happening is called the complement of A
Equally likely outcomes

If I roll a fair die, what is the probability that I will get the value 3?

There are six possibilities, that upon rolling I get 1, 2, 3, 4, 5, 6

All are equally likely, so the probability I get 3 is just ONE out of those SIX.

\[
A = ? \\
P(A) = ? \\
P(\text{not } A) = ?
\]
Equally likely outcomes

If I roll a fair die, what is the probability that I will get the value 3?

There are six possibilities, that upon rolling I get 1, 2, 3, 4, 5, 6

All are equally likely, so the probability I get 3 is just ONE out of those SIX.

\[A = \text{getting a 3} \]

\[P(A) = \frac{1}{6} \]

\[P(\text{not } A) = \frac{5}{6} \]
Equally likely outcomes

If we have a list of all possible outcomes and all of them are equally likely

\[P(\text{specific outcome}) = \frac{1}{\text{number of outcomes}} \]

For the die the number of outcomes is 6.
For a coin it is 2.
Equally likely outcomes

If an event consists of more outcomes then

\[
P(\text{event}) = \frac{\text{number of outcomes in that event}}{\text{number of outcomes}}
\]

For example, if I want the probability of getting 3 or 4
My event consists of \text{TWO} outcomes and

\[
P(\text{event}) = \frac{2}{6} = \frac{1}{3}
\]
A dispute

Starbucks and McDonald’s coffee: can people tell the difference?

Experiment: Give each person both kinds of coffee, in random order, and ask which they prefer.

Easy start: What is the probability that two tasters will prefer McCafe?
A dispute

What is your opinion?

Take a few seconds to think and discuss
Claim A

There are three possible outcomes:

Neither person chooses McCafe,
only one chooses McCafe,
both choose McCafe.

These three outcomes are equally likely,
so each outcome has probability $\frac{1}{3}$.

In particular, the probability that both choose McCafe is $\frac{1}{3}$.
Claim B

There are four equally likely outcomes:

Both choose McCafe (MM);

First chooses McCafe - Second chooses Starbucks (MS);

First chooses Starbucks - Second chooses McCafe (SM);

Both choose Starbucks (SS).

Because these four outcomes are equally likely, each has probability 1/4.

So the probability of having MM is 1/4
Claims

<table>
<thead>
<tr>
<th>People that choose McCafe</th>
<th>Claim A probability</th>
<th>Claim B probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>1/3</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Let’s do an experiment

<table>
<thead>
<tr>
<th>People that choose McCafe</th>
<th>Frequency</th>
<th>Relative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>782</td>
<td>0.26</td>
</tr>
<tr>
<td>1</td>
<td>1493</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>725</td>
<td>0.24</td>
</tr>
<tr>
<td>Total</td>
<td>3000</td>
<td>1.00</td>
</tr>
</tbody>
</table>

A sample of 3000 people

Who is right?
Let’s do an experiment

People that choose McCafe

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Relative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>782</td>
</tr>
<tr>
<td>1</td>
<td>1493</td>
</tr>
<tr>
<td>2</td>
<td>725</td>
</tr>
<tr>
<td>Total</td>
<td>3000</td>
</tr>
</tbody>
</table>

Claim B!
Law of large numbers

In a random sampling,

the larger the sample,
the closer the proportion of successes in the sample tends to be the proportion in the population.

Example, simulation of flipping a coin

<table>
<thead>
<tr>
<th>Number of Flips</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>2</td>
<td>45</td>
<td>525</td>
<td>4990</td>
<td>50246</td>
</tr>
<tr>
<td>Tails</td>
<td>8</td>
<td>55</td>
<td>475</td>
<td>5010</td>
<td>49754</td>
</tr>
</tbody>
</table>
Sample space

Sample Space for a chance process is a complete list of disjoint outcomes (all single possible results)

Complete
no possible outcomes are left off the list.

Disjoint (or mutually exclusive)
no two outcomes can occur at once.

Often by symmetry we can assume that the outcomes on a sample space are equally likely.

To be sure we need to collect data and see if indeed each of the outcomes occurs the same number of times (approximately).
Examples

Rolling a fair die

Sample Space: \{1,2,3,4,5,6\}

\[P(4) = \frac{1}{6} \]

\[P(\text{number is even}) = \frac{3}{6} = \frac{1}{2} \]

Selecting a card from a poker deck.

Sample Space:
\{A\heartsuit,2\heartsuit,3\heartsuit,...,Q\heartsuit,K\heartsuit, A\diamondsuit,2\diamondsuit,3\diamondsuit,...,Q\diamondsuit,K\diamondsuit, A\clubsuit,2\clubsuit,3\clubsuit,...,Q\clubsuit,K\clubsuit, A\spadesuit,2\spadesuit,3\spadesuit,...,Q\spadesuit,K\spadesuit\}
Examples

Sample space

\{ A\heartsuit, 2\heartsuit, 3\heartsuit, \ldots, Q\heartsuit, K\heartsuit, A\spadesuit, 2\spadesuit, 3\spadesuit, \ldots, Q\spadesuit, K\spadesuit, A\clubsuit, 2\clubsuit, 3\clubsuit, \ldots, Q\clubsuit, K\clubsuit \}

Select a card

\[P(3\heartsuit) = 1/52 \]

\[P(\text{Ace}) = 4/52 = 1/13 \]

\[P(\spadesuit) = 13/52 = 1/4 \]

\[P(\clubsuit \text{ or } \heartsuit) = 26/52 = 1/2 \]
Random Process

Let’s make a tree diagram every time we perform a random decision.

Example: we give three people McCafe and Strabucks and ask them which they prefer.

A random process is repeated several times
Person A Person B Person C

M → M → M
S → S → S
M → M → M
S → S → S
M → M → M
S → S → S

Outcome
You write them
Person A Person B Person C

M

M

S

S

S

M

M

S

S

S

M

M

S

S

S

OUTCOMES
The fundamental Counting Principle

For a two-stage process, with \(n_1 \) possible outcomes for stage 1 and \(n_2 \) possible outcomes for stage 2, the number of possible outcomes for the two stages together is \(n_1 \times n_2 \).

More generally, if there are \(k \) stages, with \(n_i \) possible outcomes for stage \(i \), then the number of possible outcomes for all \(k \) stages taken together is

\[
n_1 \times n_2 \times n_3 \times \ldots \times n_k
\]
The fundamental Counting Principle

Suppose you flip a fair coin five times.

a. How many possible outcomes are there?

b. What is the probability you get five heads?

c. What is the probability you get four heads and one tail?
Addition rule and disjoint events

“OR” in mathematics means one, the other, or both.

Two events A and B are called disjoint (mutually exclusive) if they have no outcomes in common.

If A and B are disjoint then
\[P(A \text{ and } B) = 0 \]

Similarly if A, B are mutually exclusive then
\[P(A \text{ or } B) = P(A) + P(B) \]
Let’s go to Vegas

What is the probability that I roll a fair die
and get 4 (event A) and 5 (event B)

\[P(A \text{ and } B) = ? \]

And

\[P(A \text{ or } B) = ? \]
McCafe vs. Starbucks

What is the probability that one person out of two likes Starbucks more and the other likes McCafe more?

Is it 1/3 or 1/4?

THINK!
Are these disjoint?

Labor force in the USA

<table>
<thead>
<tr>
<th>Noninstitutional Population</th>
<th>Number of People (in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employees in nonagricultural industries</td>
<td>144</td>
</tr>
<tr>
<td>Employees in agricultural and related industries</td>
<td>2</td>
</tr>
<tr>
<td>Unemployed but seeking employment</td>
<td>7</td>
</tr>
<tr>
<td>Not in the labor force</td>
<td>79</td>
</tr>
<tr>
<td>Total</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage of U.S. Adults Who Engaged in Activity at Least Once in the Prior 12 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining out</td>
<td>49</td>
</tr>
<tr>
<td>Reading books</td>
<td>39</td>
</tr>
<tr>
<td>Computer games</td>
<td>20</td>
</tr>
<tr>
<td>Going to the beach</td>
<td>24</td>
</tr>
</tbody>
</table>

Our free time
D11. Suppose you select a person at random from your campus. Are these pairs of events mutually exclusive?

a. has ridden a roller coaster; has ridden a Ferris wheel
b. owns a classical music CD; owns a jazz CD
c. is a senior; is a junior
d. has brown hair; has brown eyes
e. is left-handed; is right-handed
f. has shoulder-length hair; is male

D12. Suppose there is a 20% chance of getting a mosquito bite each summer evening that you go outside. Can you use the Addition Rule for Disjoint Events to compute the probability that you will get bitten if you go outside on three summer evenings? If you go outside on six summer evenings?
Obesity in America

<table>
<thead>
<tr>
<th>Weight</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither Overweight nor Obese ($BMI < 25$)</td>
<td>15.4</td>
<td>23.3</td>
<td>38.7</td>
</tr>
<tr>
<td>Overweight ($25 \leq BMI < 30$)</td>
<td>21.9</td>
<td>14.9</td>
<td>36.8</td>
</tr>
<tr>
<td>Obese ($BMI \geq 30$)</td>
<td>12.3</td>
<td>12.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Total</td>
<td>49.6</td>
<td>50.4</td>
<td>100</td>
</tr>
</tbody>
</table>

Questions:

What is the probability of being overweight OR obese?
What is the probability of being overweight OR male?
Obesity in America

<table>
<thead>
<tr>
<th>Weight</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither Overweight nor Obese (BMI < 25)</td>
<td>15.4</td>
<td>23.3</td>
<td>38.7</td>
</tr>
<tr>
<td>Overweight (25 ≤ BMI < 30)</td>
<td>21.9</td>
<td>14.9</td>
<td>36.8</td>
</tr>
<tr>
<td>Obese (BMI ≥ 30)</td>
<td>12.3</td>
<td>12.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Total</td>
<td>49.6</td>
<td>50.4</td>
<td>100</td>
</tr>
</tbody>
</table>

overweight OR obese = P(over) + P(obese) = 0.613
Easy - why?
Obesity in America

<table>
<thead>
<tr>
<th>Weight</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither Overweight nor Obese ($BMI < 25$)</td>
<td>15.4</td>
<td>23.3</td>
<td>38.7</td>
</tr>
<tr>
<td>Overweight ($25 \leq BMI < 30$)</td>
<td>21.9</td>
<td>14.9</td>
<td>36.8</td>
</tr>
<tr>
<td>Obese ($BMI \geq 30$)</td>
<td>12.3</td>
<td>12.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Total</td>
<td>49.6</td>
<td>50.4</td>
<td>100</td>
</tr>
</tbody>
</table>

overweight OR male =

\[P(\text{over}) + P(\text{male}) - P(\text{over and male}) = \]

\[0.368 + 0.496 - 0.219 \]

more thoughtful
Addition rule

For any two events A and B

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
Venn Diagrams

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

Which of the two represents mutually exclusive events?
A question

If I roll two dice, what is the probability that I get doubles or a sum of eight?

Identify A, B and A and B

And use the previous results
If I roll two dice, what is the probability that I get doubles or a sum of eight?

\[
P(\text{doubles and sum 8}) = P(\text{doubles}) + P(\text{sum 8}) - P(4 \text{ and } 4) = \\
\frac{6}{36} + \frac{5}{36} - \frac{1}{36} = \\
\frac{10}{36} = \frac{5}{18}
\]
Hk

Page 236/245

E2, E3, E4, E7, E8, E9, E11, E12, E13, E14, E15, E18, E28