Key Concepts and Skills

• Know how to calculate expected returns
• Understand the impact of diversification
• Understand the systematic risk principle
• Understand the security market line
• Understand the risk-return trade-off

Expected Returns

• Expected returns are based on the probabilities of possible outcomes
• In this context, “expected” means “average” if the process is repeated many times
• The “expected” return does not even have to be a possible return

\[E(R) = \sum_{i=1}^{n} p_i R_i \]
Example: Expected Returns

- Suppose you have predicted the following returns for stocks C and T in three possible states of nature. What are the expected returns?
 - State Probability C T
 - Boom 0.3 0.15 0.25
 - Normal 0.5 0.10 0.20
 - Recession ??? 0.02 0.01
- \(R_C = 0.3(0.15) + 0.5(0.10) + 0.2(0.02) = 0.099 = 9.9\% \)
- \(R_T = 0.3(0.25) + 0.5(0.20) + 0.2(0.01) = 0.177 = 17.7\% \)

Portfolios

- A portfolio is a collection of assets
- An asset’s risk and return are important to how the stock affects the risk and return of the portfolio
- The risk-return trade-off for a portfolio is measured by the portfolio expected return and standard deviation, just as with individual assets
Example: Portfolio Weights

Suppose you have $15,000 to invest and you have purchased securities in the following amounts. What are your portfolio weights in each security?

- $2,000 of DCLK
 \[\text{DCLK: } \frac{2}{15} = .133 \]
- $3,000 of KO
 \[\text{KO: } \frac{3}{15} = .2 \]
- $4,000 of INTC
 \[\text{INTC: } \frac{4}{15} = .267 \]
- $6,000 of KEI
 \[\text{KEI: } \frac{6}{15} = .4 \]

Portfolio Expected Returns

The expected return of a portfolio is the weighted average of the expected returns of the respective assets in the portfolio.

\[E(R_p) = \sum_{j=1}^{m} w_j E(R_j) \]

You can also find the expected return by finding the portfolio return in each possible state and computing the expected value as we did with individual securities.
Example: Expected Portfolio Returns

• Consider the portfolio weights computed previously. If the individual stocks have the following expected returns, what is the expected return for the portfolio?
 – DCLK: 19.65%
 – KO: 8.96%
 – INTC: 9.67%
 – KEI: 8.13%
• \(\text{E}(R_P) = .133(19.65) + .2(8.96) + .267(9.67) + .4(8.13) = 10.24\% \)

Expected versus Unexpected Returns

• Realized returns are generally not equal to expected returns
• There is the expected component and the unexpected component
 – At any point in time, the unexpected return can be either positive or negative
 – Over time, the average of the unexpected component is zero
Announcements and News

- Announcements and news contain both an expected component and a surprise component
- It is the surprise component that affects a stock’s price and therefore its return
- This is very obvious when we watch how stock prices move when an unexpected announcement is made, or earnings are different from anticipated

Efficient Markets

- Efficient markets are a result of investors trading on the unexpected portion of announcements
- The easier it is to trade on surprises, the more efficient markets should be
- Efficient markets involve random price changes because we cannot predict surprises
Systematic Risk

• Risk factors that affect a large number of assets
• Also known as non-diversifiable risk or market risk
• Includes such things as changes in GDP, inflation, interest rates, etc.

Unsystematic Risk

• Risk factors that affect a limited number of assets
• Also known as unique risk and asset-specific risk
• Includes such things as labor strikes, part shortages, etc.
Returns

• Total Return = expected return + unexpected return
• Unexpected return = systematic portion + unsystematic portion
• Therefore, total return can be expressed as follows:
• Total Return = expected return + systematic portion + unsystematic portion

Diversification

• Portfolio diversification is the investment in several different asset classes or sectors
• Diversification is not just holding a lot of assets
• For example, if you own 50 Internet stocks, then you are not diversified
• However, if you own 50 stocks that span 20 different industries, then you are diversified
Table 11.7

<table>
<thead>
<tr>
<th>(1) Number of Stocks in Portfolio</th>
<th>(2) Average Standard Deviation of Annual Portfolio Returns</th>
<th>(3) Ratio of Portfolio Standard Deviation to Standard Deviation of a Single Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.924%</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>37.36</td>
<td>.76</td>
</tr>
<tr>
<td>4</td>
<td>29.69</td>
<td>.60</td>
</tr>
<tr>
<td>6</td>
<td>26.64</td>
<td>.54</td>
</tr>
<tr>
<td>8</td>
<td>24.98</td>
<td>.51</td>
</tr>
<tr>
<td>10</td>
<td>23.93</td>
<td>.49</td>
</tr>
<tr>
<td>20</td>
<td>21.68</td>
<td>.44</td>
</tr>
<tr>
<td>30</td>
<td>20.87</td>
<td>.42</td>
</tr>
<tr>
<td>40</td>
<td>20.46</td>
<td>.42</td>
</tr>
<tr>
<td>50</td>
<td>20.20</td>
<td>.41</td>
</tr>
<tr>
<td>100</td>
<td>19.69</td>
<td>.40</td>
</tr>
<tr>
<td>200</td>
<td>19.42</td>
<td>.39</td>
</tr>
<tr>
<td>300</td>
<td>19.34</td>
<td>.39</td>
</tr>
<tr>
<td>400</td>
<td>19.29</td>
<td>.39</td>
</tr>
<tr>
<td>500</td>
<td>19.27</td>
<td>.39</td>
</tr>
<tr>
<td>1,000</td>
<td>19.21</td>
<td>.39</td>
</tr>
</tbody>
</table>

These figures are from Table 1 in Meir Statman, *How Many Stocks Make a Diversified Portfolio?* Journal of Financial and Quantitative Analysis 22 (September 1987), pp. 303—64. They were derived from E. J. Elton and M. J. Gruber, *Risk Reduction and Portfolio Size: An Analytic Solution*, Journal of Business 50 (October 1977), pp. 415—37.