In questions 1 through 4 write the letter from (a) to (d) in the space provided. No partial credit will be awarded.

1. Calculate the following indefinite integral: \(\int (5x^4 - x^3 + 8x - 1) \, dx \).

 (a) \(20x^4 - 3x^2 + 8 \)
 (b) \(x^5 - \frac{1}{4}x^4 + 4x^2 - x + C \)
 (c) \(20x^4 - 3x^2 + 8 + C \)
 (d) \(x^5 - 4x^4 + 8x^2 - x + C \)

 Answer: (B)

2. An object is moving along a line with an acceleration of \(a = t \) cm/sec\(^2\) at time \(t \) in seconds, and with an initial velocity of \(v_0 = v(0) = 3 \) cm/sec. Find the velocity after 2 seconds.

 (a) \(v(2) = 3 \) cm/sec
 (b) \(v(2) = 4 \) cm/sec
 (c) \(v(2) = 5 \) cm/sec
 (d) \(v(2) = 6 \) cm/sec

 Answer: (C)

 If \(a = t \), then \(v = \int t \, dt = \frac{t^2}{2} + C \). Then \(3 = v(0) = 0^2/2 + C \), thus \(v(t) = \frac{t^2}{2} + 3 \), and \(v(2) = \frac{2^2}{2} = 3 = 5 \) cm/sec.

3. Suppose that \(\sum_{i=1}^{10} a_i = 10 \) and \(\sum_{i=1}^{10} b_i = 30 \). What is the value of \(\sum_{i=1}^{10} (2a_i + b_i - 4) \)?

 (a) 46
 (b) 10
 (c) 66
 (d) 30

 Answer: (B)

 \(\sum_{i=1}^{10} (2a_i + b_i - 4) = 2 \sum_{i=1}^{10} a_i + \sum_{i=1}^{10} b_i - 4 \sum_{i=1}^{10} 1 = 2(10) + 30 - 4(10) = 10 \).

4. What is the solution to the differential equation \(\frac{dy}{dx} = x^{-3} + 2 \) with initial condition \(y = 3 \) at \(x = 1 \)?

 (a) \(-3x^{-4} + C \)
 (b) \(-\frac{1}{2}x^{-2} + 2x + \frac{3}{2} \)
 (c) \(-3x^{-4} + 6 \)
 (d) \(-\frac{1}{4}x^{-4} + 2x + \frac{5}{4} \)

 Answer: (B)

 \(y = \int (x^{-3} + 2) \, dx = -\frac{1}{2}x^{-2} + 2x + C \) and \(3 = y(1) = -\frac{1}{2} + 2 + C = \frac{3}{2} + C \), thus \(C = \frac{3}{2} \).
5. Calculate the sum of the areas of the circumscribed rectangles for the function \(y = x^2 + x \) on the interval \([0, 2]\) with \(n = 5 \) equal intervals (or rectangles).

\[
\Delta x = \frac{5}{2} = 0.4, \text{ thus } x_0 = 0, x_1 = 0.4, x_2 = 0.8, x_3 = 1.2, x_4 = 1.6, \text{ and } x_5 = 2. \text{ Thus }
\]

\[
\text{Area} = \sum_{i=1}^{5} f(x_i)\Delta x
= f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x + f(x_5)\Delta x
= 0.4(0.4^2 + 0.4 + 0.8^2 + 0.8 + 1.2^2 + 1.2 + 1.6^2 + 1.6 + 2^2 + 2)
= 0.4(14.8) = 5.92.
\]

6. Consider the function \(f(x) = 3x^4 - 8x^3 + 5 \). Give the following information. (Justify all your answers.)

(a) Compute \(f'(x) \) and \(f''(x) \).
\[
\begin{align*}
 f'(x) &= 12x^3 - 24x^2 \\
 f''(x) &= 36x^2 - 48x
\end{align*}
\]

(b) What are the critical points of \(f(x) \)?
There are no endpoints or singular points since \(f' \) is a polynomial. For stationary points we solve \(f'(x) = 0 \).

\[
\begin{align*}
12x^3 - 24x^2 &= 0 \implies x = 0
\end{align*}
\]

\[
\begin{align*}
12x^2(x - 2) &= 0 \implies x = 0 \text{ or } x = 2.
\end{align*}
\]

The only critical values are \(x = 0 \) and \(x = 2 \).

(c) Make the corresponding table to determine the intervals where the function is increasing or decreasing.

<table>
<thead>
<tr>
<th>Interval</th>
<th>((-\infty, 0))</th>
<th>((0, 2))</th>
<th>((2, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Value</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>-36</td>
<td>-12</td>
<td>108</td>
</tr>
<tr>
<td>conclusion</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\uparrow)</td>
</tr>
</tbody>
</table>
(d) Indicate the values of x for which there is a local maximum (if any), and also the values of x for which there is a local minimum (if any).

Based on (c), there is a minimum at $x = 2$ and there are no local maximums.

(e) What are the possible points of inflection of $f(x)$? (values of x where $f''(x)$ is undefined or zero)

$f''(x)$ is always defined (it is a polynomial) and if we set $f''(x) = 0$ we get

\[36x^2 - 48x = 0 \implies 12x(3x - 4) = 0 \implies x = 0 \text{ or } x = 4/3.\]

The only possible inflection points are at $x = 0$ or $x = 4/3$.

(f) Make the corresponding table to determine the intervals where the function is concave up or concave down.

<table>
<thead>
<tr>
<th>Interval</th>
<th>$(-\infty, 0)$</th>
<th>$(0, \frac{4}{3})$</th>
<th>$(\frac{4}{3}, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Value</td>
<td>-1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$f''(x)$</td>
<td>84</td>
<td>-12</td>
<td>48</td>
</tr>
<tr>
<td>Conclusion</td>
<td>\cup</td>
<td>\cap</td>
<td>\cup</td>
</tr>
</tbody>
</table>

(g) Indicate the values of x for which there is an inflection point (if any)

Based on (f), there are inflection points at $x = 0$ and $x = 4/3$ since there was a change in concavity there.

7. Find the following indefinite integrals:

(a) $\int 3x^2 \sqrt{x^3 + 7} \, dx$.

Let $u = x^3 + 7$, then $du = 3x^2 \, dx$ and

\[\int 3x^2 \sqrt{x^3 + 7} \, dx = \int \sqrt{u} \, du = \int u^{1/2} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (x^3 + 7)^{3/2} + C.\]

(b) $\int \frac{\cos x}{\sin x + 3} \, dx$. Hint: use $u = \sin x + 3$.

Let $u = \sin x + 3$, then $du = \cos x \, dx$ and

\[\int \frac{\cos x}{\sin x + 3} \, dx = \int \frac{1}{u} \, du = \ln |u| + C = \ln |\sin x + 3| + C\]

8. A farmer wishes to fence off two identical adjoining rectangular pens, each with 900 square feet of area, as shown in the figure. Find the dimensions x and y such that the least amount of fence is required. Make sure you justify why the dimensions give the required minimum.
Since the area of each pen is 900 then \(xy = 900 \). The amount of fencing needed is \(F = 4x + 3y \), we can substitute \(y = \frac{900}{x} \) to get
\[
F(x) = 4x + \frac{2700}{x}.
\]
The feasible domain of \(F \) is \((0, \infty)\). (Note \(x \) can’t be zero). The derivative of \(F \) is
\[
F'(x) = 4 - 2700x^{-2} = 4 - \frac{2700}{x^2}.
\]
There are no endpoints or singular points \((x = 0 \text{ is not in the domain of } F)\), to get the stationary values we set \(F'(x) = 0 \).
\[
4 - \frac{2700}{x^2} = 0 \implies 4 = \frac{2700}{x^2} \implies x^2 = \frac{2700}{4} = 675 \implies x = \pm \sqrt{675} = \pm 15\sqrt{3}.
\]
The negative option is out of the domain so \(x = 15\sqrt{3} \) is the only critical value. Now we need to see if it is a max or a min (or neither). In class we saw three different ways to do this, here we only present the 1st derivative test:

<table>
<thead>
<tr>
<th>Interval</th>
<th>(0, 15\sqrt{3})</th>
<th>(15\sqrt{3}, \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Value (x)</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>-2696</td>
<td>1</td>
</tr>
<tr>
<td>conclusion</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Since \(x = 15\sqrt{3} \) is the only local minimum then it is the global minimum. In this case \(y = \frac{900}{x} = \frac{900}{15\sqrt{3}} = 20\sqrt{3} \). So the required dimensions are \(x = 15\sqrt{3} \approx 25.981 \) feet, and \(y = 20\sqrt{3} \approx 34.641 \) feet.

9. The domain of a differentiable function \(f(x) \) is the interval \([-6, 8]\). Sketch the graph of a function \(y = f(x) \) making use of the properties below. Label any local maximums or minimums and points of inflection.

- \(f'(x) > 0 \) in the interval \((-1, 3)\).
- \(f'(x) < 0 \) in the intervals \((-6, -1) \text{ and } (3, 8)\).
- \(f''(x) > 0 \) in the intervals \((-3, 1) \text{ and } (5, 8)\).
- \(f''(x) < 0 \) in the intervals \((-6, -3) \text{ and } (1, 5)\).

There are many correct solutions, but they all share the general shape of the graph.