Limit and Continuity in 2-D.

1-D

As x approaches c
$f(x)$ approaches L_x

$\forall \varepsilon > 0 \exists \delta > 0 / |x - c| < \delta \Rightarrow |f(x) - L_x| < \varepsilon$

2-D

As (x,y) approaches (c,d)
$f(x,y)$ approaches L

$\forall \varepsilon > 0 \exists \delta > 0 / d((x,y),(c,d)) < \delta \Rightarrow |f(x,y) - L| < \varepsilon$

New IN 2-D

1. Many ways to approach the point
 The limit must be independent of the way we approach the point

2. Relationship with 1-D
 $\lim_{(x,y) \to (c,d)} f(x,y) \Rightarrow$ sometimes $\lim_{x \to c} \lim_{y \to d} f(x,y) \Rightarrow \lim_{y \to d} \lim_{x \to c} f(x,y)$

This gives us a tool of disproving limits:
If two different ways give different answers
\Rightarrow No limit

This gives us a tool for evaluating limits in practice