20. \(m = \frac{W}{g} = \frac{0.80 \times 10^3 \text{ N}}{9.8 \text{ N/kg}} = 82 \text{ kg} \)

21. (a) Set the weight of the mass equal to the force in Hooke’s law.
\(W = F \)
\(mg = kx \)
\(k = \frac{mg}{x} \)
\((1.4 \text{ kg}) \left(9.8 \frac{\text{ N}}{\text{ kg}} \right) = 7.2 \text{ cm} \)
\(= 1.9 \text{ N/cm} \)

(b) Solve for \(m \) in the equation for \(k \) found in part (a).
\(m^2 = \frac{kx^2}{g} \left(\frac{mg}{x_1} \right) \left(\frac{x_2}{x_1} \right) = \frac{12.2 \text{ cm}}{7.2 \text{ cm}} (1.4 \text{ kg}) = 2.4 \text{ kg} \)

22. (a) Multiply the extension per mass by the mass to find the maximum extension required.
\(\left(\frac{1.0 \text{ mm}}{25 \text{ g}} \right) (5.0 \text{ kg}) \left(\frac{1000 \text{ g}}{1 \text{ kg}} \right) \left(\frac{1 \text{ m}}{1000 \text{ mm}} \right) = 0.20 \text{ m} \)

(b) Set the weight of the mass equal to the force in Hooke’s law.
\(W = F \)
\(mg = kx \)
\(k = \frac{mg}{x} \)
\((5.0 \text{ kg}) \left(9.8 \frac{\text{ N}}{\text{ kg}} \right) = \frac{0.20 \text{ m}}{250 \text{ N/m}} \)

26. Set the forces on the spaceship due to the Earth and the Moon equal. Use magnitudes. (The forces are collinear.)
\(F_{\text{E}} = F_{\text{M}} \)
\(GM_{\text{E}} m = GM_{\text{M}} m \)
\(\frac{r_{\text{E}}^2}{r_{\text{M}}^2} = \frac{M_{\text{E}}}{M_{\text{M}}} \)
\(r_{\text{E}} = r_{\text{M}} \sqrt{\frac{M_{\text{E}}}{0.0123 M_{\text{E}}}} \)
\(= 9.02 r_{\text{M}} \)

Find the percentage.
\(\frac{r_{\text{E}}}{r_{\text{E}} + r_{\text{M}}} = \frac{9.02 r_{\text{M}}}{9.02 r_{\text{M}} + r_{\text{M}}} = 0.900 \)

The distance from the Earth is 90.0% of the Earth-Moon distance.

27. (a) \(W = mg = \frac{GM_{\text{E}} m}{r^2} = \frac{6.673 \times 10^{-11} \frac{\text{ N} \cdot \text{m}^2}{\text{kg}^2}}{(5.975 \times 10^{24} \text{ kg})(320 \text{ kg})} = 250 \text{ N} \)
(b) \[W = mg = (320 \text{ kg}) \left(9.8 \frac{\text{N}}{\text{kg}} \right) = 3100 \text{ N} \]

(c) According to Newton's third law, the satellite exerts a force on the Earth equal and opposite to the force the Earth exerts on it, that is, \(250 \text{N toward the satellite} \).

35. (a) To just get the block to move, the force must be equal to the maximum force of static friction.

\[
F = f_{\text{max}} = \mu_s N = \mu_s mg
\]

\[
\mu_s = \frac{F}{mg} = \frac{12.0 \text{ N}}{(3.0 \text{ kg}) (9.8 \frac{\text{N}}{\text{kg}})} = 0.41
\]

(b) The maximum static frictional force is now proportional to the total mass of the two blocks.

\[
F = \mu_s mg = 0.41 (3.0 \text{ kg} + 7.0 \text{ kg}) \left(9.8 \frac{\text{N}}{\text{kg}} \right) = 40 \text{ N}
\]

36. (a) Since the sleigh is moving with constant speed, the net force acting on the sleigh is \(\text{zero} \).

(b) The force of magnitude \(T \) must be equal to the force of kinetic friction, since \(F_{\text{net}} = 0 \) (constant speed).

\[
T = f_k = \mu_k mg
\]

\[
\mu_k = \frac{T}{mg} = \frac{150 \text{ N}}{250 \text{ N}} = 0.60
\]

37. (a) The force static friction is greater than the applied force, so

\[f_k > F \]

\[\mu_s N > F \]

\[\mu_s > \frac{F}{N} \]

\[\mu_s > \frac{120 \text{ N}}{250 \text{ N}} \]

\[\mu_s > 0.48 \]

(b) \[\mu_s = \frac{F}{N} = \frac{150 \text{ N}}{250 \text{ N}} = 0.60 \]

(c) \[\mu_k = \frac{F}{N} = \frac{120 \text{ N}}{250 \text{ N}} = 0.48 \]

44. (a) All forces are co-linear. The magnitude of the force of static friction on block A due to the floor must be equal to the magnitude of the tension in the cord.

\[
T = f_{\text{sA}} = \mu_A N = \mu_A mg
\]

The magnitude of the applied force must be equal to the magnitude of the tension in the cord plus the magnitude of the force of static friction on block B due to the floor.

\[
F = T + f_{\text{sB}} = \mu_A mg + \mu_B mg = mg (\mu_A + \mu_B) = (2.0 \text{ kg}) \left(9.8 \frac{\text{N}}{\text{kg}} \right) (0.45 + 0.30) = 15 \text{ N}
\]

(b) \[T = \mu_A mg = 0.45 (2.0 \text{ kg}) \left(9.8 \frac{\text{N}}{\text{kg}} \right) = 8.8 \text{ N} \]
46. (a) The tension due to the weight of the potatoes is divided evenly between the two sets of scales.
\[T = \frac{W}{2} \]
\[= \frac{220.0 \, \text{N}}{2} \]
\[= 110.0 \, \text{N} \]

(b) Scales B and D will read 75.00 N as before. Scales A and C will read an additional 5.0 N due to the weights of B and D, respectively.
\[T_A = 110.0 \, \text{N} + 5.0 \, \text{N} = 115.0 \, \text{N} = T_C \]
\[T_B = 110.0 \, \text{N} = T_D \]

47. (a) The mass connected to the lower spring exerts a force on the lower spring equal to its weight, \(W \). The spring stretches an amount \(x = \frac{F}{k} = \frac{W}{k} \). The lower spring exerts a force on the upper spring equal to \(F = W \), and causes it to stretch by \(x = \frac{F}{k} = \frac{W}{k} \). Thinking of the two springs as a single spring:
\[2x = \frac{F}{k} + \frac{F}{k} = \frac{2F}{k} = x', \text{ so } F = \frac{k}{2} x' = k'x'. \]
Therefore, \(\frac{k}{2} = k' \), the effective spring constant.

(b) Sum the forces on the mass.
\[F + F - W = 0 \]
\[kx + kx - W = 0 \]
\[2kx - W = 0 \]
\[W = 2kx \]
\[= k'x \]
Therefore, \(\frac{2k}{k'} = k' \), the effective spring constant.

53. (a) The system with the two weights:
Sum the vertical forces on the masses. The masses are in static equilibrium. (The masses are identical.)
The left weight:
\[\sum F_y = T - W = 0 \]
\[T = W = 550 \, \text{N} \]
The right weight:
\[\sum F_y = T - W = 0 \]
\[T = W = 550 \, \text{N} \]
So, since the tension is 550 N, the scale reads 550 N.
The system with the single weight:
\[\sum F_y = T - W = 0 \]
\[T = W = 550 \, \text{N} \]
In both cases the two ropes pull on the scale with forces of 550N in opposite directions, so the scales give the same reading.

(b) \[T = W = 550 \, \text{N} \]

Chapter 3

19. Treat the last 10 freight cars as a system.
The vertical forces cancel.
\[\sum F_y = N - mg = ma_y = 0 \]
Let the direction of motion be \(+x\).
The force exerted on the eleventh car by the tenth is the tension at the coupler, \(T_{11} \).
The force is 1.0×10^5 N in the direction of motion.

20. Use the expressions for a_y and T found in Example 3.7.

(a) $a_y = \frac{(m_2 - m_1)g}{m_2 + m_1} = \frac{(5.0 \text{ kg} - 3.0 \text{ kg})(9.8 \text{ m/s}^2)}{5.0 \text{ kg} + 3.0 \text{ kg}} = 2.5 \text{ m/s}^2$

(b) $T = \frac{2m_1m_2}{m_1 + m_2}g = \frac{2(3.0 \text{ kg})(5.0 \text{ kg})}{3.0 \text{ kg} + 5.0 \text{ kg}} \left(\frac{9.8 \text{ m/s}^2}{2} \right) = 37 \text{ N}$

22. Use Newton’s second law for the vertical direction.

$\sum F_y = T - mg = ma_y$

Solve for T.

$T = m(a_y + g) = (2010 \text{ kg}) \left(1.5 \frac{\text{ m}}{\text{s}^2} + 9.8 \frac{\text{ m}}{\text{s}^2} \right) = 22.7 \text{ kN}$

23. Use Newton’s second law for the vertical direction.

$\sum F_y = T - mg = ma_y$

Solve for T.

$T = m(a_y + g) = (2010 \text{ kg}) \left(-1.5 \frac{\text{ m}}{\text{s}^2} + 9.8 \frac{\text{ m}}{\text{s}^2} \right) = 17 \text{ kN}$

30. (a) Since the train slows down, the acceleration is negative.

$\frac{v_x - v_{0x}}{\Delta t} = a_x \Delta t$

$v_x = v_{0x} + a_x \Delta t$

$= 22 \frac{\text{ m}}{\text{s}} + \left(-1.4 \frac{\text{ m}}{\text{s}^2} \right)(8.0 \text{ s})$

$= 11 \text{ m/s}$

(b) $x = x_0 + v_{0x}t + \frac{1}{2}a_x t^2 = 0 + \left(22 \frac{\text{ m}}{\text{s}} \right)(8.0 \text{ s}) + \frac{1}{2} \left(-1.4 \frac{\text{ m}}{\text{s}^2} \right)(8.0 \text{ s})^2 = 130 \text{ m}$

36. $v_x^2 - v_{0x}^2 = 2a_x \Delta x$

$a_x = \frac{v_x^2 - v_{0x}^2}{2\Delta x}$

$a_{x1} = a_{x2}$ for the same maximum braking force.

$\frac{v_{x1}^2 - v_{0x1}^2}{2\Delta x_1} = \frac{v_{x2}^2 - v_{0x2}^2}{2\Delta x_2} \quad (v_{x1} = v_{x2} = 0)$

$\frac{v_{0x1}^2}{\Delta x_1} = \frac{v_{0x2}^2}{\Delta x_2}$

$\Delta x_2 = \left(\frac{v_{0x2}}{v_{0x1}} \right)^2 \Delta x_1$

$= \left(\frac{60.0 \text{ m/h}}{30.0 \text{ m/h}} \right)^2 (12 \text{ m})$

$= 48 \text{ m}$
45. \(v_y^2 - v_{0y}^2 = -2g\Delta y \)
\[
v_y = \sqrt{v_{0y}^2 - 2g\Delta y}
\]
\[
= \sqrt{10.0 \text{ m/s}^2 - 2 \left(9.8 \text{ m/s}^2 \right) \left(-40.8 \text{ m}\right)}
\]
\[
= 30.0 \text{ m/s}
\]

46. (a) \[|\Delta y| = \frac{1}{2} gt^2 \]
\[
= \frac{1}{2} \left(9.8 \text{ m/s}^2 \right) (3.0 \text{ s})^2
\]
\[
= 44 \text{ m}
\]
(b) \(v_y^2 = -2g\Delta y \)
\[
v_y = \sqrt{-2g\Delta y}
\]
\[
= \sqrt{-2 \left(9.8 \text{ m/s}^2 \right) (-2.5 \text{ m})}
\]
\[
= 7.0 \text{ m/s}
\]
(c) \[|v_y| = gt \left(9.8 \text{ m/s}^2 \right) (3.0 \text{ s}) = 29 \text{ m/s} \]

50. (a) \(F_d = bn^2 = \left(0.14 \text{ N/s}^2 \text{ m}^2 \right) \left(64 \text{ m/s} \right)^2 = 570 \text{ N} \)

The force of air resistance is directed opposite the diver’s motion, so \(F_d = 570 \text{ N up} \).

(b) Use Newton’s second law. Up is the positive direction.
\[\sum F_y = F_d - W = ma_y \]
\[
a_y = \frac{F_d - W}{m} = \frac{F_d - mg}{m} = \frac{F_d}{m} - g = \frac{570 \text{ N}}{120 \text{ kg}} - 9.8 \frac{\text{m}}{\text{s}^2} = -5.0 \frac{\text{m}}{\text{s}^2}
\]
The acceleration is \(5.0 \text{ m/s}^2 \) downward.

(c) Set \(W = F_d \), or \(mg = bh_v^2 \), and solve for \(v_t \).
\[
v_t = \sqrt{\frac{mg}{b}} = \sqrt{\frac{\left(120 \text{ kg} \right) \left(9.8 \text{ m/s}^2 \right)}{0.14 \text{ N/s}^2 \text{ m}^2}} = 92 \text{ m/s}
\]

52. (a) \[\frac{\Delta g}{g} = 0.01000 = \frac{g - g'}{g} = 1 - \frac{g'}{g} = 1 - \frac{GM_E}{G_E} - \frac{(R_E + h)^2}{(R_E)^2} = 1 - \frac{R_E^2}{(1 + \frac{h}{R_E})^2}
\]

Solve for \(h \).
\[0.01000 = 1 - \frac{1}{1 + \left(\frac{h}{R_E}\right)^2} \]

\[\frac{1}{\left(1 + \frac{h}{R_E}\right)^2} = 0.99000 \]

\[\frac{1}{0.99000} = \left(1 + \frac{h}{R_E}\right)^2 \]

\[\pm \sqrt{\frac{1}{0.99000}} = 1 + \frac{h}{R_E} \]

\[\frac{h}{R_E} = \sqrt{\frac{1}{0.99000}} - 1 \]

\[h = R_E \left(\sqrt{\frac{1}{0.99000}} - 1 \right) \]

\[= (6.371 \times 10^3 \text{ km}) \left(\sqrt{\frac{1}{0.99000}} - 1 \right) \]

\[= 32 \text{ km} \]

The positive root was chosen because \(h > 0 \) and \(R_E > 0 \).

(b) The drag force is much larger than variations in the gravitational force due to changes to \(g \), so air resistance is more significant.

53. (a) The elevator is accelerating downward, so \(a_y = -0.50 \text{ m/s}^2 \).

\[W' = \frac{W}{g} (g + a_y) = \frac{598 \text{ N}}{9.80 \frac{\text{m}}{\text{s}^2}} \left(1 + \frac{-0.50 \frac{\text{m}}{\text{s}^2}}{9.80 \frac{\text{m}}{\text{s}^2}} \right) = 567 \text{ N} \]

(b) The elevator is accelerating upward, so \(a_y = 0.50 \text{ m/s}^2 \).

\[W' = \frac{W}{g} (g + a_y) = \frac{598 \text{ N}}{9.80 \frac{\text{m}}{\text{s}^2}} \left(1 + \frac{0.50 \frac{\text{m}}{\text{s}^2}}{9.80 \frac{\text{m}}{\text{s}^2}} \right) = 629 \text{ N} \]

62. Choose the +x-axis to the right and +y-axis up. Use Newton’s second law.

(a) For \(m_1 \):

\[\sum F_{1y} = N - W_1 = N - m_1 g = 0, \text{ so } N = m_1 g. \]

\[\sum F_{1x} = T - f_k = T - \mu_k N = T - \mu_k m_1 g = m_1 a_{1x} \]

For \(m_2 \):

\[\sum F_{2x} = 0 \]

\[\sum F_{2y} = T - W_2 = T - m_2 g = m_2 a_{2y} \]

Now, \(a_{1x} \) and \(a_{2y} \) must be equal in magnitude, otherwise the cord will compress or expand. \(a_{1x} \) is in the +x-direction and \(a_{2y} \) is in the -y-direction. So, let \(a = a_{1x} = -a_{2y} \). Then,

\[T - \mu_k m_1 g = m_1 a \] and \(T - m_2 g = -m_2 a \).

Subtract the second equation from the first and solve for \(a \).

\[-\mu_k m_1 g + m_2 g = m_1 a + m_2 a \]

\[g (m_2 - \mu_k m_1) = a (m_1 + m_2) \]

\[a = \frac{m_2 - \mu_k m_1}{m_1 + m_2} g \]

Find \(T \).
\[T - m_2 g = -m_2 a \]
\[T = m_2 g - m_2 \frac{m_2 - \mu_k m_1}{m_1 + m_2} \]
\[= \frac{m_2 (m_1 + m_2) - m_2 (m_2 - \mu_k m_1)}{m_1 + m_2} g \]
\[= \frac{m_1 m_2 + m_2^2 - m_2^2 + m_2 m_2 \mu_k}{m_1 + m_2} g \]
\[T = (1 + \mu_k) \frac{m_1 m_2}{m_1 + m_2} g \]