Foliations II

Alberto Candel
Lawrence Conlon

California State University at Northridge, Northridge, CA 91330

Washington University, St. Louis, MO 63130
The first author was supported by NSF grants DMS-9973086 and DMS-0049077.

To our wives Juana and Jackie
Contents

Preface vii

Part 1. Analysis and Geometry on Foliated Spaces 3

Foreword to Part 1

Chapter 1. The C^*-Algebra of a Foliated Space 5

§1.1. Twisted Forms and Densities 6
§1.2. Functions on non-Hausdorff Spaces 8
§1.3. The Graph of a Foliated Space 11
§1.4. The C^*-algebra of a Foliated Space 18
§1.5. The Basic Examples 27
§1.6. Quasi-invariant Currents 37
§1.7. Representations of the Foliation C^*-algebra 48
§1.8. Minimal Foliations and their C^*-algebras 54

Chapter 2. Harmonic Measures for Foliated Spaces 61

§2.1. Existence of Harmonic Measures 62
§2.2. The Diffusion Semigroup 68
§2.3. The Markov Process 80
§2.4. Characterizations of Harmonic Measures 86
§2.5. The Ergodic Theorem 96
§2.6. Ergodic Decomposition of Harmonic Measures 99
§2.7. Recurrence 112
Chapter 3. Generic Leaves
§3.1. The Main Results and Examples 121
§3.2. The Holonomy Graph 124
§3.3. Proof of the Theorems 130
§3.4. Generic Geometry of Leaves 133

Part 2. Characteristic Classes and Foliations
Foreword to Part 2 141
Chapter 4. The Euler Class of Circle Bundles 143
§4.1. Generalities about Bundles 144
§4.2. Cell Complexes 146
§4.3. The First Obstruction 150
§4.4. The Euler Class 157
§4.5. Foliated Circle Bundles 166
§4.6. Further Developments 176
Chapter 5. The Chern-Weil Construction 179
§5.1. The Chern-Weil Homomorphism 180
§5.2. The Structure of $I_n^*(K)$ 183
§5.3. Chern Classes and Pontryagin Classes 186
Chapter 6. Characteristic Classes and Integrability 189
§6.1. The Bott Vanishing Theorem 189
§6.2. The Godbillon-Vey Class in Arbitrary Codimension 194
§6.3. Construction of the Exotic Classes 196
§6.4. Haefliger Structures and Classifying Spaces 202
Chapter 7. The Godbillon-Vey Classes 211
§7.1. The Godbillon Class and Measure Theory 211
§7.2. Proper Foliations 234
§7.3. Codimension One 236
§7.4. Quasi-polynomial Leaves 241

Part 3. Foliated 3-Manifolds
Foreword to Part 3 253
Chapter 8. Constructing Foliations 255
§8.1. Orientable 3-Manifolds 256
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Open Book Decompositions</td>
<td>263</td>
</tr>
<tr>
<td>8.3</td>
<td>Nonorientable 3-Manifolds</td>
<td>264</td>
</tr>
<tr>
<td>8.4</td>
<td>Raymond’s Theorem</td>
<td>267</td>
</tr>
<tr>
<td>8.5</td>
<td>Thurston’s Construction</td>
<td>276</td>
</tr>
<tr>
<td>9.1</td>
<td>Statements of Results</td>
<td>288</td>
</tr>
<tr>
<td>9.2</td>
<td>Poincaré-Bendixson Theory and Vanishing Cycles</td>
<td>292</td>
</tr>
<tr>
<td>9.3</td>
<td>Novikov’s Exploding Disk</td>
<td>302</td>
</tr>
<tr>
<td>9.4</td>
<td>Completion of the Proofs of Novikov’s Theorems</td>
<td>309</td>
</tr>
<tr>
<td>9.5</td>
<td>The Roussarie-Thurston Theorems</td>
<td>314</td>
</tr>
<tr>
<td>10.1</td>
<td>Compact Leaves of Reebless Foliations</td>
<td>328</td>
</tr>
<tr>
<td>10.2</td>
<td>Knots, links, and genus</td>
<td>335</td>
</tr>
<tr>
<td>10.3</td>
<td>The norm on real homology</td>
<td>342</td>
</tr>
<tr>
<td>10.4</td>
<td>The unit ball in the Thurston norm</td>
<td>347</td>
</tr>
<tr>
<td>10.5</td>
<td>Foliations without holonomy</td>
<td>357</td>
</tr>
<tr>
<td>11.1</td>
<td>A Basic Example</td>
<td>363</td>
</tr>
<tr>
<td>11.2</td>
<td>Sutured Manifolds</td>
<td>366</td>
</tr>
<tr>
<td>11.3</td>
<td>Operations on Sutured Manifolds</td>
<td>369</td>
</tr>
<tr>
<td>11.4</td>
<td>The Main Theorem</td>
<td>378</td>
</tr>
<tr>
<td>11.5</td>
<td>Applications</td>
<td>387</td>
</tr>
<tr>
<td>11.6</td>
<td>Higher Depth</td>
<td>399</td>
</tr>
<tr>
<td>A.1</td>
<td>Bounded operators</td>
<td>401</td>
</tr>
<tr>
<td>A.2</td>
<td>Measures on Hausdorff spaces</td>
<td>402</td>
</tr>
<tr>
<td>A.3</td>
<td>Hilbert spaces</td>
<td>405</td>
</tr>
<tr>
<td>A.4</td>
<td>Topological spaces and algebras</td>
<td>408</td>
</tr>
<tr>
<td>A.5</td>
<td>C^*-algebras</td>
<td>410</td>
</tr>
<tr>
<td>A.6</td>
<td>Representations of Algebras</td>
<td>412</td>
</tr>
<tr>
<td>A.7</td>
<td>The Algebra of Compact Operators</td>
<td>417</td>
</tr>
<tr>
<td>A.8</td>
<td>Representations of $C_0(X)$</td>
<td>420</td>
</tr>
<tr>
<td>A.9</td>
<td>Tensor products</td>
<td>422</td>
</tr>
<tr>
<td>A.10</td>
<td>von Neumann algebras</td>
<td>424</td>
</tr>
</tbody>
</table>
Appendix B. Riemannian Geometry and Heat Diffusion 427

§B.1. Geometric Concepts and Formulas 427
§B.2. Estimates of Geometric Quantities 430
§B.3. Basic function theory 434
§B.4. Regularity Theorems 435
§B.5. The Heat Equation 438
§B.8. The Green Function 449
§B.9. Dirichlet Problem and Harmonic Measure 451
§B.10. Diffusion and Resolvent 455

Appendix C. Brownian Motion 463

§C.1. Probabilistic Concepts 463
§C.2. Construction of Brownian Motion 467
§C.3. The Markov Process 471
§C.4. Continuity of Brownian Paths 476
§C.5. Stopping Times 479
§C.6. Some Consequences of the Markov Property 482
§C.7. The Discrete Dirichlet and Poisson Problems 485
§C.8. Dynkin’s Formula 488
§C.9. Local Estimates of Exit Times 494

Appendix D. Planar Foliations 499

§D.1. The Space of Leaves 499
§D.2. Basic Isotopies 503
§D.3. The Hausdorff Case 508
§D.4. Decomposing the Foliatiion 512
§D.5. Construction of the Diffeomorphism 516

Appendix. Bibliography 529
Appendix. Index 539
If the behavior of the frog is accepted as a discrete version of the movement of a Brownian particle, then it is reasonable to expect that the solution to the Dirichlet problem on a bounded domain D of the manifold X with boundary data φ will be given by

$$f(x) = E_x[\varphi(T_D(\omega))]$$

where T_D is the first exit time from D.

The random frog will now be put to work toward a solution to the Poisson problem, submitting her to the following process. Positioned at time 0 at the point (mq, nq), let her jump at will (at discrete times $t = 0, 1, 2 \ldots$) to one of the neighbouring lily pads with the same probability as before. If at time T she hits a boundary pad, then assign the first exit time $T = T(\omega)$ to the sample Brownian path. While it may or may not be possible to explicitly compute the expectation $E_{(m,n)}[T]$, it turns out that it satisfies an important identity.

As before, if the frog is at (mq, nq) at time t, then at time $t + 1$ she is going to be at one of the neighboring lilies $(m'q, n'q) = ((m + s)q, (n + s)q)$ with probability $1/4$. It follows that

$$E_{(m,n)}[T] = \left(\sum_{-1 \leq r, s \leq 1} p_{rs} E_{(m+r,m+s)}[T] \right) + 1.$$

Equivalently, the function $f(mq, nq) = E_{(m,n)}[T]$ satisfies the equation

$$\triangle f(mq, nq) = -1$$