Problem 3 Given the power series

\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]

with radius of convergence \(R \), let \(z_0 \) be the zero of \(f \) which lies closest to the origin. Prove that

\[\frac{r|a_0|}{M(r) + |a_0|} \leq |z_0| \]

for any \(r < R \), where \(M(r) = \max \{|f(z)| \} \).

Solution Assume that \(a_0 \neq 0 \), otherwise \(z_0 = 0 \) and there is nothing to do. Then, if \(|f(z) - a_0| < |a_0| \) on \(|z| = \rho \), the function \(f \) has no zeros on \(|z| \leq \rho \) because of Rouche’s theorem, since the constant function \(a_0 \) has no zeros. Thus the problem reduces to showing that if \(\rho < \frac{r|a_0|}{M(r) + |a_0|} \) and \(|z| = \rho \), then \(|f(z) - a_0| < |a_0| \).

If \(r < R \), then \(\frac{r|a_0|}{M(r) + |a_0|} < R \). Therefore, if \(|z| = \rho < \frac{r|a_0|}{M(r) + |a_0|} \), then the following manipulations of power series are permissible.

\[
|f(z) - a_0| \leq \sum_{n=1}^{\infty} |a_n||z|^n
= \sum_{n=1}^{\infty} |a_n|\rho^n
< \sum_{n=1}^{\infty} |a_n| \left(\frac{r|a_0|}{M(r) + |a_0|} \right)^n \quad \text{(series of positive coefficients)}
= \sum_{n=1}^{\infty} |a_n| \frac{r^n}{M(r) + |a_0|} \left(\frac{|a_0|}{M(r) + |a_0|} \right)^n
\leq \sum_{n=1}^{\infty} M(r) \left(\frac{|a_0|}{M(r) + |a_0|} \right)^n \quad \text{(Cauchy’s estimate)}
= \left(\frac{M(r)|a_0|}{M(r) + |a_0|} \right) \sum_{n=0}^{\infty} \frac{|a_0|}{M(r) + |a_0|} \cdot \frac{1}{M(r) + |a_0|}
= \frac{|a_0|}{M(r) + |a_0|} \cdot \frac{1 - \frac{|a_0|}{M(r) + |a_0|}}{1 - \frac{|a_0|}{M(r) + |a_0|}} \quad \text{(geometric series)}
= |a_0|
\]

The strict inequality appears in the third line of this string.