Problem 1. A function $f : U \to \mathbb{C}$ has an analytic kth root on U if there is a function h analytic on U such that $h^k = f$ on U. Suppose that f is analytic and never 0 on the open set U. Prove that f has an analytic logarithm on U if and only if f has an analytic kth root for all $k = 2, 3, \cdots$.

Solution. (1) “⇒” If g is an analytic logarithm for f on U, then $e^g = f$, and so, $(e^{g/n})^n = f$. Therefore $e^{g/n}$ is an analytic nth root for f on U.

“⇐” We show that $\int_\gamma f'/f = 0$ for every closed path γ in U.

If γ is a closed path in U, then the path $f \circ \gamma$ does not pass through 0 because f is never zero on U. Therefore,

$$\text{ind}(f \circ \gamma; 0) = \frac{1}{2\pi i} \int_\gamma \frac{f'(z)}{f(z)} \, dz,$$

by a theorem in class.

Let h_n be an analytic function on U such that $(h_n)^n = f$, $n = 2, 3, \cdots$. Then

$$\frac{f'}{f} = \frac{h_n'}{h_n}.$$

Hence

$$\frac{1}{n} \int_\gamma \frac{f'}{f} = \int_\gamma \frac{h_n'}{h_n},$$

or

$$\frac{1}{n} \text{ind}(f \circ \gamma; 0) = \text{ind}(h_n \circ \gamma; 0).$$

Since the index of a point with respect to a closed path is an integer, and since $\text{ind}(f \circ \gamma; 0)$ does not depend on n, the only possibility for this identity to hold for all n is that $\text{ind}(h_n \circ \gamma; 0) = 0$ for n sufficiently large. Thus

$$\int_\gamma \frac{f'}{f} = 0$$

and so f has an analytic logarithm on U.

Problem 2. Let a, b be two distinct complex numbers, and let U be the complement of the segment $[a, b]$. Show that $f(z) = (z-a)(z-b)$ has an analytic square root but not an analytic logarithm on U.

Problem 3. Let f, g be continuous mappings of a connected set $S \subset \mathbb{C}$ into $\mathbb{C} \setminus \{0\}$.

(1) If $f^n = g^n$ for some $n = 2, 3, \cdots$, then show that $f = e^{2\pi ik/n}g$ on S, for some $k = 0, 1, \cdots, n-1$. (Thus if f and g agree at one point, then they agree everywhere.)

(2) Show that (1) does not hold in general if f and g map into \mathbb{C} instead of $\mathbb{C} \setminus \{0\}$.

1
Solution. (1) The function \(h = f/g \) is continuous on \(S \) and \(h^n(z) = 1 \) for each \(z \in S \). Therefore, for each \(z \in S \), \(h(z) \) is one of the \(n \)-th roots of 1, namely, one of the numbers \(e^{2\pi i k/n} \), \(k = 0, 1, \ldots, n-1 \). Since \(h \) is continuous and \(S \) is connected, it follows that there is some \(k = 0, 1, \ldots, n-1 \) such that \(h(z) = e^{2\pi i k/n} \) for all \(z \in S \).

(2) Let \(S \) be the real axis and let \(f(x) = x \) and \(g(x) = |x| \) for \(x \in S \).

Problem 4. Give two Laurent series expansions in powers of \(z \) for the function

\[
 f(z) = \frac{1}{z^2(1-z)}
\]

and specify the regions in which those expressions are valid.

Solution. The function \(f \) has singularities at \(z = 0 \) and \(z = 1 \). There are two Laurent series expansions, one on \(0 < |z| < 1 \) and another on \(1 < |z| < \infty \).

First decompose into simple fractions

\[
 \frac{-2}{z^2(z-1)} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{1-z}
\]

If \(|z| < 1 \), then

\[
 \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n
\]

Therefore,

\[
 f(z) = \frac{-1/2}{z^2} + \frac{-1/2}{z} + \sum_{n=0}^{\infty} z^n, \quad 0 < |z| < 1.
\]

If \(1 < |z| \), then \(|1/z| < 1 \), and

\[
 \frac{1}{1-z} = \frac{-1/z}{1-(1/z)} = \frac{-1}{z} \sum_{n=0}^{\infty} \frac{1}{z^n} = \sum_{n=1}^{\infty} (-1) \frac{1}{z^n}.
\]

Therefore,

\[
 f(z) = \frac{1}{2} z^{-2} + \frac{1}{2} z^{-1} + \sum_{n=-\infty}^{3} (-1) z^n, \quad 1 < |z| < \infty.
\]

Problem 5. Let \(f \) be analytic and never 0 on the open set \(U \subset \mathbb{C} \), and let \(g \) be a continuous logarithm of \(f \) on \(U \). Prove that \(g \) is analytic on \(U \).

Solution. Analyticity is a local property, thus to show that \(f \) is analytic on \(U \) it suffices to show that \(f \) is analytic a disk about each point in \(U \). Let \(D \) be a disk contained in \(U \). Then \(D \) is convex and \(f \) is analytic and nowhere 0 on \(D \), so it has an analytic logarithm \(h \) on \(D \). Since \(g \) is a continuous logarithm for \(f \) on \(D \) and \(D \) is connected, \(g = h + 2\pi k \), for some integer \(k \). Thus \(g \) is analytic on \(D \), because it is the sum of two analytic functions on \(D \).