1. Let X be a set.
 (a) Carefully define the concepts σ-ring and σ-field of subsets of X.
 (b) Let \mathcal{R} be the collection of countable subsets of X. Show that \mathcal{R} is a σ-ring, and determine when \mathcal{R} is a σ-field.

2. Let X be a countable infinite set, and let \mathcal{F} be the collection of its finite subsets and their complements. For $A \in \mathcal{F}$, let $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if the complement of A is finite.
 (a) Show that \mathcal{F} is a field.
 (b) Show that μ is finitely additive. Is it countably additive?

3. Let (X, \mathcal{F}, μ) be a probability space (with \mathcal{F} a σ-field) and let B_1, B_2, \ldots be a countable collection of sets from \mathcal{F} such that $\sum_{n=1}^{\infty} \mu(B_n) < \infty$. Show that $\mu(\limsup B_n) = 0$.

4. Let X be a set and \mathcal{F} a σ-field of subsets of X.
 (a) Define the concept of measurable function $f : X \to [-\infty, +\infty]$.
 (b) For $X = \mathbb{R}$ and \mathcal{F} the Lebesgue measurable sets, show that the function $f : \mathbb{R} \to [-\infty, +\infty]$ given by
 \[
 f(x) = \begin{cases}
 -x & \text{if } x < 0, \\
 +\infty & \text{if } x \geq 0,
 \end{cases}
 \]

5. Let (X, \mathcal{F}, μ) be a probability space (with \mathcal{F} a σ-field).
 (a) Define the concepts: Two sets A and B from \mathcal{F} are independent; a countable collection $A_n, n = 1, 2, \ldots$, of sets from \mathcal{F} is independent.
 (b) Let X be the unit interval, \mathcal{F} the Lebesgue measurable sets and μ the Lebesgue measure. Let B_n be the subset of the unit interval corresponding to the event "HTH at the nth, $n+1$st and $n+2$st trial" in a Bernoulli sequence. Show that the sets $B_1, B_4, B_7, B_{10}, \ldots$ are independent.

6. Let X be a set, \mathcal{R} a σ-field of subsets of X, and μ_1 and μ_2 measures on \mathcal{R}. Assume that $\mu_1(X) = \mu_2(X) < \infty$. Let \mathcal{L} be the family of those subsets $A \in \mathcal{R}$ for which $\mu_1(A) = \mu_2(A)$. Show that \mathcal{L} has the following properties:
 (a) If $A, B \in \mathcal{L}$ and $B \subset A$, then $A \setminus B \in \mathcal{L}$.
 (b) If $A_n \in \mathcal{L}$, $n = 1, 2, \ldots$, are mutually disjoint, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$.

7. Let (X, \mathcal{F}, μ) be a probability space (with \mathcal{F} a σ-field), and let $\{B_n\}_{n=1}^{\infty}$ be a countable collection of subsets from \mathcal{F}.
 (a) Prove that $\mu(\limsup B_n) \geq \limsup \mu(B_n)$.
 (b) Suppose that $X = [0, 1]$, \mathcal{F} is the field of Lebesgue measurable subsets of $[0, 1]$, and μ is Lebesgue measure. Show that if there exists a $\delta > 0$ such that $\mu(B_n) \geq \delta$ for every n, then there is at least one point which belongs to infinitely many B_n’s.