Exercise 3.1.1. Let I be the unit interval $0 \leq x \leq 1$, and let $I_{k,n}$ be the subinterval
\[
\frac{k}{n} \leq x \leq \frac{k+1}{n} \quad 0 \leq k \leq n.
\]
Let f_1 be the characteristic function of $I_{0,1}$, f_2 and f_3 the characteristic functions of $I_{0,2}$ and $I_{1,2}$, and so on. Show that the sequence f_n converges to 0 in $L^1(I)$ but it does not converge pointwise anywhere.

Solution. A figure will help you to understand what is going on.

Given an integer $n = 1, 2, \cdots$ there is a unique integer $m = 1, 2, \cdots$ such that
\[
\frac{m(m-1)}{2} + 1 < n < \frac{m(m+1)}{2} + 1
\]
and so the interval $I_{k,n}$, $(0 \leq k < n)$ has length $1/m$. Thus the integral
\[
\int_I |f_n| \cdot \mu_L = \frac{1}{m} \leq \frac{2}{\sqrt{n}}
\]
which converges to 0 as $n \to \infty$.

For $x \in I$, the sequence of values $f_n(x)$ contains infinitely many 0’s and infinitely many 1’s and thus it cannot converge. □

Exercise 3.1.3. In Exercise 3.1.1 above, extract a subsequence of f_n which converges to 0 almost everywhere.

Solution. Take $g_n = f_{(n(n-1)/2)+1}$.

□

Exercise 3.1.2. Let f_n be the function on $(0, 1]$ that is equal to 0 in $[1/n, 1]$ and equal to n in $(0, 1/n)$. Show that f_n converges pointwise to 0 everywhere in $(0, 1]$ as $n \to \infty$, but it does not converge in L^1.

Solution. The function f_n can be expressed as
\[
f_n = n\chi_{(0,1/n)}.
\]
Therefore, given $x \in (0, 1]$, if $n > 1/x$, then $f_n(x) = 0$. It follows that
\[
\lim_{n \to \infty} f_n(x) = 0 \text{ for all } x \in (0, 1].
\]
To show that f_n does not converge in L^1 we will show that it is not a Cauchy sequence there. Let n, m be integers with $n < m$. Then the difference
\[
f_m - f_n = (m - n)\chi_{(0,1/m)} - n\chi_{(1/m, 1/n)}
\]

Therefore, given $x \in (0, 1]$, if $n > 1/x$, then $f_n(x) = 0$. It follows that
\[
\lim_{n \to \infty} f_n(x) = 0 \text{ for all } x \in (0, 1].
\]
To show that f_n does not converge in L^1 we will show that it is not a Cauchy sequence there. Let n, m be integers with $n < m$. Then the difference
\[
f_m - f_n = (m - n)\chi_{(0,1/m)} - n\chi_{(1/m, 1/n)}
\]
and thus
\[|f_m - f_n| = (m - n)\chi_{(0,1/m)} + n\chi_{[1/m,1/n)}. \]
Therefore, the \(L^1 \)-norm
\[
\|f_m - f_n\|_1 = \int_{(0,1]} |f_m - f_n| \cdot \mu_L
\]
\[
= 2\frac{m - n}{m}
\]
which does not converge to 0 as \(n \to \infty \) and \(m \to \infty \) (take \(m = 2n \to \infty \)). □

Exercise 3.2.2. Let \(V \) be an inner product space. Show that
\[
\|v + w\|^2 + \|v - w\|^2 = 2\|v\|^2 + 2\|w\|^2.
\]

Solution. This is a calculation. Compute each term on the left side:
\[
\|v + w\|^2 + = \langle v + w, v + w \rangle
\]
\[
= \langle v, v \rangle + \langle w, w \rangle + \langle v, w \rangle + \langle w, v \rangle
\]
\[
= \|v\|^2 + \|w\|^2 + \langle v, w \rangle + \langle w, v \rangle
\]
and
\[
\|v - w\|^2 + = \langle v - w, v - w \rangle
\]
\[
= \langle v, v \rangle + \langle w, w \rangle - \langle v, w \rangle - \langle w, v \rangle
\]
\[
= \|v\|^2 + \|w\|^2 - \langle v, w \rangle - \langle w, v \rangle
\]
and add them up. □

Exercise 3.2.4. Let \(X = (0,1] \) equipped with Lebesgue measure \(\mu \). Show that the function \(f(x) = x^{-3/4} \) is in \(\text{calL}^1(X, \mu) \) but not in \(L^2(X, \mu) \).

Solution. Use Exercise 2.4.1. The functions \(f \) and \(f^2 \) are nonnegative and measurable on \(J = (0,1] \), and Riemann integrable on \([a,1] \) for every \(0 < a < 1 \). The Riemann integrals are
\[
\int_a^1 f(x) \cdot dx = \int_a^1 x^{-3/4} \cdot dx = 4 - 4a^{1/4}
\]
and
\[
\int_a^1 f(x) \cdot dx = \int_a^1 x^{-3/4} \cdot dx = -2 + \frac{2}{a^{1/2}}
\]
Therefore, by Exercise 2.4.1,
\[
\int f \cdot \mu = \lim_{a \to 0} \left(4 - 4a^{1/4} \right) = 4 < \infty
\]
and
\[
\int f \cdot \mu = \lim_{a \to 0} \left(-2 + \frac{2}{a^{1/2}} \right) = \infty.
\]