Problem 1. A vector X in \mathbb{R}^n is called a probability vector if its coordinates are all nonnegative and add up to 1. An $n \times n$ matrix is an stochastic matrix if its columns are probability vectors. Use the Brouwer fixed point theorem to prove that if A is a 3×3 stochastic matrix then there is a probability vector X such that $AX = X$.

Solution. Let P denote the set of probability vectors in \mathbb{R}^3. Element of P are vectors (x_1, x_2, x_3) such that $x_1, x_2, x_3 \geq 0$ and $x_1 + x_2 + x_3 = 1$. This set is homeomorphic to a closed triangle in the plane. Indeed, the mapping that sends (x_1, x_2, x_3) to (x_1, x_2) is a homeomorphism of S onto the triangle in the plane bounded by the coordinate axes and the line $x + y = 1$.

It is very easy to show that a triangle is homeomorphic to a disk. If T is the triangle in the plane, let D be the inscribed circle. Assume for simplicity that the center of D is the origin in the plane, and define a mapping f from T onto the init disk as follows. If P is in T, then let Q_P be the point of intersection of the ray from 0 (the center of D) P with the boundary of the triangle T, and set $f(P) = P/|Q_P|$. It is a good exercise to show that f is a homeomorphism of T onto the unit disk.

Because a (closed) disk has the fixed point property, the set P of probability vectors also has the fixed point property (see first part of Exercise 4.7, which was done in class). If we show that the result of multiplying an stochastic matrix A by a probability vector results in a probability vector, the the fixed point property of P will imply that there is a probability vectors X such that $AX = X$.

Suppose that A is of the form

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

where each column is a probability vector, that is $a_{1i} + a_{2i} + a_{3i} = 1$ for $i = 1, 2, 3$, and all entries $a_{ij} \geq 0$. Then the vector AX is

$$AX = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{pmatrix}$$

Each coordinate of this vector AX is non-negative because the coordinates of X are non-negative, and the entries of A are non-negative. Furthermore, the sum of all three coordinates of AX equals 1 (it is much easier to prove this by visually inspecting the expression for AX above than it is to write down).

Problem 2. Let f, g be two continuous mappings from X into the unit circle S^1. Prove that if $|f(x) - g(x)| < 2$ for all x in X, then f and g are homotopic.
Solution. To say that for each x in X the points $f(x)$ and $g(x)$ in the unit circle S^1 are at distance < 2 is the same as to say that the points $f(x)$ and $g(x)$ are never antipodal. Therefore, the hypothesis of the problem implies that for each x in X the segment from $f(x)$ to $g(x)$ never contains the origin in the plane \mathbb{R}^2, that is, $tg(x) + (1 - t)f(x) \neq 0$ for every x in X and every t in $[0,1]$.

Therefore, the map $H : X \times [0,1] \to S^1$ given by

$$H(x,t) = \frac{tg(x) + (1-t)f(x)}{|tg(x) + ((1-t)f(x)|}$$

is well defined, continuous and satisfies $H(x,0) = f(x)$ and $H(x,1) = g(x)$ for all x in X. That is H is a homotopy from f to g. \hfill \Box$

Problem 3. Prove that if the sphere is covered by three closed subsets, then one of them must contain a pair of antipodal points.

Note. This is Proposition 4.33 in the textbook. The proof there is not complete; you have to provide a complete proof.

Solution. The only thing missing from the proof in the textbook is the following (Exercise 4.34): If A is a subset of \mathbb{R}^3 (or any metric space) then the distance to A function is continuous. The distance to A function is given by

$$P \mapsto d(P,A) = \inf\{d(P,Q) \mid Q \text{ in } A\}.$$

We will prove that

$$|d(P,A) - d(Q,A)| \leq d(P,Q)$$

for all points P and Q. Continuity follows from this by the usual $\varepsilon - \delta$ argument.

First, we always have the triangle inequality

$$d(P,R) \leq d(P,Q) + d(Q,R).$$

If you fix R in A, then $d(P,A) \leq d(P,R) \leq d(P,Q) + d(Q,R)$, because of the definition of $d(P,A)$. That is, the number $d(P,A)$ is a lower bound for the set of numbers $\{d(P,Q) + d(P,R) \mid R \in A\}$, and so it cannot be larger that the infimum (greatest lower bound) of this set of numbers, that is to say

$$d(P,A) \leq \inf\{d(P,Q) + d(P,R) \mid R \text{ in } A\} = d(P,Q) + d(Q,A).$$

Switching the roles of P and Q we also obtain that $d(Q,A) \leq d(P,Q) + d(Q,A)$, and thus that

$$|d(P,A) - d(Q,A)| \leq d(P,Q).$$

\hfill \Box

Problem 4. Prove that the sphere can be covered with four closed subsets, neither of them containing a pair of antipodal points.

Solution. Inscribe a regular tetrahedron in the unit sphere and orthogonally project it onto the surface of the sphere from the center of the sphere. The result is a “spherical” regular tetrahedron. The four faces of this tetrahedron are the four closed subsets covering the sphere that the problem asks for. Indeed, no face can contain a pair of antipodal points because each face is contained in an open hemisphere. \hfill \Box

Problem 5. Suppose that A is a connected closed subset of \mathbb{R}^2, and P is a point in A. Prove that $[\omega_P] = 0$ in $H^1(\mathbb{R}^2 \setminus A)$ if and only if A is unbounded.
Solution. Suppose that A is unbounded. We have to show that the closed 1-form ω_P is exact on $\mathbb{R}^2 \setminus A$. This is equivalent to showing that $\int_\gamma \omega_P = 0$ for every closed, piecewise smooth path γ in $\mathbb{R}^2 \setminus A$.

But $\int_\gamma \omega_P = W(\gamma, P)$, and this winding number is 0 because P is in the unbounded component of the complement of the image of γ. Indeed, p is in A and A is a connected subset of $\mathbb{R}^2 \setminus A$, so A must be contained in the unbounded component of the complement of the image of γ.

Suppose that $[\omega_P] = 0$ in $H^1(\mathbb{R}^2 \setminus A)$, that is, suppose that ω_P is exact on $\mathbb{R}^2 \setminus A$. This implies that $\int_\gamma \omega_P = 0$ for every closed, piecewise smooth path γ in $\mathbb{R}^2 \setminus A$. If A was not unbounded, then there would be a disk with center 0 and radius r containing A in its interior. If γ_r is the circle of radius r and center 0, then the winding number $W(\gamma, P) = 1$, that is $\int_{\gamma_r} \omega_P = 1$, contradicting the fact that ω_P is exact.