
Problem 1 Given a 1-form ω on an open set U, prove that the following are equivalent (i) $d\omega = 0$; (ii) $\int_{\partial R} \omega = 0$ for all closed rectangles R contained in U; (iii) every point in U has a neighborhood such that $\int_{\partial R} \omega = 0$ for all closed rectangles contained in the neighborhood. Is the same true if closed rectangles are replaced by disks?

Problem 2 Let $H : U \to \mathbb{R}^2$ be a smooth function. Show that $dH^* = H^* d$.

Problem 3 Let R be a region in the plane between two concentric circles γ_1 and γ_2 of radius $r_1 < r_2$. Prove that if U is an open set containing R and ω is a 1-form on U, then
\[\int_R d\omega = \int_{\partial R} \omega, \]
where $\partial R = \gamma_2 - \gamma_1$.

Problem 4 Prove that the relation of being homotopic relative to endpoints, or homotopic as closed paths, is an equivalence relation.

Problem 5 Let $\gamma : [a, b] \to \mathbb{R}^2 \setminus \{P\}$ be a continuous path, and let v be a vector in the plane. Let $\gamma + v$ denote the path in $\mathbb{R}^2 \setminus \{P + v\}$ defined by $(\gamma + v)(t) = \gamma(t) + v$. Prove that
\[W(\gamma + v, P + v) = W(\gamma, P). \]