Math 512A. Homework 9. Due 11/14/07

(Revised 11/10)

Problem 1. (i) Suppose that \(g(x) = f(x + c) \) for all \(x \). Prove, starting from the definition of the derivative, that \(g'(x) = f'(x + c) \) for all \(x \).

(ii) Prove that if \(g(x) = f(cx) \), then \(g'(x) = c \cdot f'(cx) \).

(iii) Suppose that \(f \) is differentiable and periodic, with period \(a \), i.e., \(f(x + a) = f(x) \) for all \(x \). Prove that \(f' \) is also periodic with period \(a \).

(iv) (Not required) Prove that if \(f \) is even, i.e., \(f(x) = f(-x) \), then \(f'(x) = -f'(-x) \).

(v) (Not required) Prove that if \(f \) is odd, i.e., \(f(-x) = -f(x) \), then \(f'(x) = f'(-x) \).

Problem 2. (i) Let \(f(x) = x^2 \) if \(x \) is rational, and \(f(x) = 0 \) if \(x \) is irrational. Prove that \(f \) is differentiable at 0.

(ii) Let \(f \) be a function such that \(|f(x)| \leq x^2 \) for all \(x \). Prove that \(f \) is differentiable at 0.

(iii) (Not required) Let \(\alpha > 1 \). Prove that if \(f \) satisfies \(|f(x)| \leq |x|^\alpha \), then \(f \) is differentiable at 0.

Problem 3. Suppose that \(a \) and \(b \) are two consecutive roots of the polynomial function \(f \), but that \(a \) and \(b \) are not double roots, so that we can write \(f(x) = (x-a)(x-b)g(x) \) where \(g(a) \neq 0 \) and \(g(b) \neq 0 \).

(i) Prove that \(g(a) \) and \(g(b) \) have the same sign.

(ii) Prove that there is some number \(x \) with \(a < x < b \) and \(f'(x) = 0 \).

(iii) (Not required) Prove that (ii) holds true even if \(a \) and \(b \) are multiple roots. Hint: If \(f(x) = (x-a)^n(x-b)^m g(x) \) where \(g(a) \neq 0 \) and \(g(b) \neq 0 \), consider the polynomial function \(h(x) = f'(x)/(x-a)^{n-1}(x-b)^{m-1} \).

Problem 4. (i) If \(a_1 < a_2 < \cdots < a_n \), find the minimum value of \(f(x) = \sum_{i=1}^{n} (x-a_i)^2 \).

(ii) Find the minimum value of \(f(x) = \sum_{i=1}^{n} |x - a_i| \).

(iii) (Not required) Let \(a > 0 \). Prove that the maximum value of

\[
 f(x) = \frac{1}{1 + |x|} + \frac{1}{1 + |x-a|}
\]

is \((2 + a)/(1 + a)\).

Problem 5. (i) Suppose that \(|f(x) - f(y)| \leq |x - y|^\alpha \) for some \(\alpha > 1 \). Prove that \(f \) is constant.

(ii) Find a function \(f \) other than a constant function such that \(|f(x) - f(y)| \leq |x - y| \).