EE 595

Part III
Simulation and Timing in VHDL
Simulation Cycle in VHDL

First-Generation simulators used a technique CAD developers call a one-list algorithm, which is relatively fast but cannot handle parallel zero delay events such as exchanging \(A \) and \(B \).

\[
\begin{align*}
A &\leq B; \quad \text{zero delay} \\
B &\leq A; \quad \text{zero delay}
\end{align*}
\]

This example would not exchange the values of \(A \) and \(B \), but would give both \(A \) and \(B \) the old value of \(B \), using one-list algorithm.

VHDL uses a \textit{two-list algorithm}, which tracks the previous and new values of signals. In this method, expressions are first evaluated, then signals are assigned new values. In VHDL, the example code performs a data exchange between the two signals \(A \) and \(B \) at some point in simulation time. In operation, the old values of \(A \) and \(B \) are fetched and scheduled for assignment, for zero delay, after a subsequent WAIT statement is executed.
Simulation Cycle in VHDL (cont’d)

The ordering of zero delay events is handled with a fictitious unit called *delta time*. Delta time represents the execution of a simulation cycle without advancing Simulation time.

All right-hand side assignments (evaluations) are calculated after assignments are made.

EE 595 EDA / ASIC Design Lab
The key points of simulation and delta time are:

- The simulator models zero-delay events using delta time.
- Events scheduled at the same time are simulated in specific order during a delta time step.
- Related logic is then re-simulated to propagate the effects for another delta time time step.
- Delta time steps continue until there is no activity for the same instant of simulated time.
Timing Model of VHDL Simulation Cycle

- VHDL uses a simulation cycle to model the stimulus and response nature of digital hardware.
Delay Types

- All VHDL signal assignment statements prescribe an amount of time that must transpire before the signal assumes its new value.

- This prescribed delay can be in one of three forms:
 - **Transport** -- prescribes propagation delay only
 - **Inertial** -- prescribes minimum input pulse width and propagation delay
 - **Delta** -- the default, if no delay time is explicitly specified
Transport Delay

- Delay must be explicitly specified by user
 - Keyword “TRANSPORT” must be used
- Signal will assume its new value after specified delay

```plaintext
-- TRANSPORT must be specified
Output <= TRANSPORT NOT (Input) AFTER 10 ns;
```
Inertial Delay

- Provides for specification of input pulse width, i.e. ‘inertia’ of output, and propagation delay:

 \[\text{target} \leq [\text{REJECT time_expression}] \text{INERTIAL waveform}; \]

- Inertial delay is default and REJECT is optional:

 \[\text{Output} \leq \text{not(Input)} \text{ after 10 ns}; \]
 -- Propagation delay and minimum pulse width are 10ns
Inertial Delay (cont’d)

- Example of gate with ‘inertia’ smaller than propagation delay
 - e.g. Inverter with propagation delay of 10ns which suppresses pulses shorter than 5ns

```
Output <= REJECT 5ns INERTIAL not(Input) after 10ns;
```

![Graph showing input and output signals with time intervals 0 to 35]

- Note that *REJECT* feature is new to VHDL 1076-1993
Delta Delay

- Default signal assignment propagation delay if no delay is explicitly prescribed
 - VHDL signals assignment cannot take place immediately
 - Delta is an infinitesimal VHDL time unit so that all signal assignments can result in signals assuming their values at some future time
 - E.g.

```vhdl
Output <= not(Input);
-- Output assumes new value in one delta cycle
```

- Supports a model of concurrent VHDL process execution
 - The order in which processes are executed by simulator does not affect simulation output
Delta Delay
An Example Without Delta Delay

- What is the behavior of C?

IN: 1->0

NAND gate evaluated first:
- IN: 1->0
- A: 0->1
- B: 1->0
- C: 0->0

AND gate evaluated first:
- IN: 1->0
- A: 0->1
- C: 0->1
- B: 1->0
- C: 1->0
Delta Delay
An Example With Delta Delay

- What is the behavior of C?

Using delta delay scheduling

<table>
<thead>
<tr>
<th>Time</th>
<th>Delta</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 ns</td>
<td>IN: 1->0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eval INVERTER</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>A: 0->1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eval NAND, AND</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B: 1->0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 0->1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>eval AND</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>C: 1->0</td>
</tr>
<tr>
<td></td>
<td>1 ns</td>
<td></td>
</tr>
</tbody>
</table>

IN: 1->0

EE 595 EDA / ASIC Design Lab

California State University
Northridge
Transport Versus Inertial Delay

- Inertial Delay
 - Default in VHDL
 - Can be similar to actual device behavior
 - Spikes are “swallowed”
 - Most commonly used in simulator

- Transport Delay
 - Must specify with key word TRANSPORT
 - Ideal delay, passes any width pulse
 - Good for wire delay and time modeling.
Delta Time

- Delta Time is a simulation time cycle. It is used to order sequential events during simulation. More than one event can occur during a delta time.

- The time between any two sequential events is called a delta. These two events may be happening at the same real time but in a specific order, or they may be separated by a large real time during which time the circuit has been “quiet”.

- A delta is the default value or if zero delay is specified as in:

  ```
  A <= not B;
  ```

 These are the same as:

  ```
  A <= not B after 0 ns;
  ```
A combinational Circuit, in which all elements have zero delay, would settle down in 0 ns, but could occupy many deltas.