Math 480. Assignment 1

1. Compute the derivatives of the following functions:
 (a) \(J(t) = \int_{\sin t}^{2t} x^3 \cos t \, dx \).
 (b) \(J(t) = \int_{\sin t}^{t} \cos(xt) \, dx \).

2. Sequences and series of functions.
 (a) Let \(f_N(x) = \begin{cases} 1 - Nx & 0 \leq x \leq \frac{1}{N} \\ 0 & \frac{1}{N} < x \leq 1 \end{cases} \).
 Find the limit of this sequence and indicate whether this convergence is uniform or not.
 (b) Let \(f_N(x) = \sin(Nx) \). Does this sequence have a limit? If so compute it.
 Justify your answer.
 (c) Let \(f_N(x) = \sum_{n=0}^{N} \frac{\sin(nx)}{3^n} \) for \(x \in \mathbb{R} \). Show that \(f_N \) converges uniformly.

3. Consider the series
 \(f(x) = - \sum_{n=1}^{\infty} \frac{x^n}{n} \).
 (a) Show that this series converges for every \(-1 \leq x < 1\).
 (b) Show that \(f(x) = \ln(1-x) \). (Hint: What is \(\sum_{n=0}^{\infty} x^n \)?)
 (c) Use this to compute \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \).

4. Let \(G \) be an open bounded set in \(\mathbb{R}^3 \) with boundary \(\partial G \) and let \(u \) be a twice differentiable real valued function on \(G \). Use the divergence theorem to prove:
 \(\int_{G} \Delta u \, dV = \int_{\partial G} \nabla u \cdot \mathbf{n} \, dS \).