Finance 436 - Futures and Options Review Notes for Midterm Exam

Chapter 1

1. Derivative securities: concepts
2. Futures and forward contracts: definitions and comparison

Exchange trading; contract size, delivery; default risk; marking to market
3. Options: concepts
4. Players in options and futures markets

Hedgers: reduce price risk (uncertainty)
Speculators: bet on price movement
Arbitrageurs: look for risk-free profit
5. Applications
6. Examples discussed in class and assignments

Chapter 2

1. Specification of futures contracts

Opening vs. closing a futures position
Long vs. short a futures position
Underlying asset
Contract size (will be given if needed)
Delivery month; Daily price limit; Position limit
Settlement price: concepts
Open interest: concepts and calculations
2. Convergence of futures price to spot price: concepts and proof
3. Margins: concepts and calculations

Initial margin; Maintenance margin; Margin call; Variation margin
4. Marking to market process: concepts and calculations
5. Orders and applications

Market order; Limit order; Stop (stop-loss) order
Stop-limit order; Day order; Open order
6. Cash settlement: concepts
7. Forward contracts: profit/loss diagrams
8. Examples discussed in class and assignments

Chapter 3

1. Hedging: concepts

Long hedging vs. short hedging
2. Basis risk: definitions and applications
3. Cross hedging

Hedge ratio: definition, estimation, and implication
Minimum variance hedge ratio: minimize the variance
Optional number of contracts
4. Hedging with stock index futures: concepts and calculations
5. Examples discussed in class and assignments

Chapter 4

1. Types of interest rates
2. Measuring interest rates: concepts and calculations
3. Zero rates: concepts
4. Forward rates: concepts and calculations
5. Term structure theories
6. Examples discussed in class and assignments

Chapter 5

1. Investment assets vs. consumption assets
2. Continuous compounding ($\mathrm{e}^{r T}$) and discounting ($\mathrm{e}^{-r T}$)
3. Forward price for an asset with no income: $F=S^{*} \mathrm{e}^{r T}$--- (5.1)
4. Forward price for an asset with a known cash income: $F=(S-I)^{*} e^{r T}---(5.2)$
5. Forward price for an asset with a known dividend yield: $F=S^{*} \mathrm{e}^{(r-q) T}---(5.3)$
6. Valuing forward contracts: $f=(F-K)^{*} \mathrm{e}^{-r T}$ (long); $f=(K-F)^{*} \mathrm{e}^{-r T}$ (short)
7. Forward prices and futures prices: concepts
8. Stock index futures contracts and characteristics: ues (5.3)
9. Currency futures: use (5.3)
10. Commodity futures with and without storage cost
11. Cost of carry
12. Examples discussed in class and assignments

Chapter 6

1. Day count convention
2. Quotations
3. T-bonds and T-bond futures contracts: concepts, applications, and calculations Cash price, quoted price, accrued interest, and cheapest to deliver
4. T-bills and T-bill futures contracts: concepts and applications
5. Duration and immunization: concepts and applications
6. Duration-based hedge ratio: concepts and applications
7. Examples discussed in class and assignments

Chapter 7

1. Swaps: concepts
2. Comparative advantage
3. Interest-rate swaps: concepts and diagrams
4. Currency swaps: concepts and diagrams
5. The role of financial intermediary
6. Examples discussed in class and homework problems

Sample Problems

Chapter 1

1. Problem 1-24

Trader A enters into a forward contract to buy gold for \$1,000 an ounce in one year.
Trader B buys a call option to buy gold for $\$ 1,000$ an ounce in one year. The cost of the option is $\$ 100$ an ounce. What is the difference between the positions of the traders? Show the profit per ounce as a function of the price of gold in one year for the two traders.

Answer: Trader A makes a profit of $S_{T}-1,000$ and Trader B makes a profit of $\max \left(S_{T}-1,000,0\right)-100$ where S_{T} is the spot price of gold in one year. Trader A does better if S_{T} is above $\$ 900$ as indicated in Figure S1.3.

Figure1.3: Profit to Trader A and Trader B in Problem 1.24
2. Assume that the spot price for gold is $\$ 1,200$ per ounce and the gold futures contract for one year delivery is trading at $\$ 1,270$. The risk-free interest rate is 5% per year. Can you arbitrage? How?

Answer: Theoretical futures price $\mathrm{F}=1,200 * \mathrm{e}^{\left(0.05^{* 1}\right)}=\$ 1,261.53$
Since the actual futures price in the market is $\$ 1,270>\$ 1,261.53$, it is overpriced so you can arbitrage
Today:
(1) Borrow $\$ 120,000$ at 5% for one year to buy 100 ounces of gold at $\$ 1,200$
(2) Sell a futures contract on gold at $\$ 1,270$ per ounce (one year delivery)

In one year:
(1) Make the delivery and collect $\$ 127,000$
(2) Repay the loan (principle plus interest) $\$ 126,153=120,000 * \mathrm{e}^{(0.05 * 1)}$
(3) Take risk-free profit = \$847

Chapter 2

1. Quiz 2.3

Answer: For a short position, if price drops, you gain; if price goes up, you lose
Margin call: lose more than $\$ 1,000$ or price goes up by more than 20 cents (5,000 ounces per contract)

2. Quiz 2.4

Answer: For a long position, if price drops, you lose; if price goes up, you gain
3. Problem 2.11

Answer: Margin call: to lose more than $\$ 1,500$ if the futures price drops by more than 10 cents per pound (since the contract size is 15,000 pounds)
Making $\$ 2,000$ total or $\$ 1,000$ per contact: if the price rises by 6.67 cents per pound

Chapter 3

1. Quiz 3.6

Answer: see the textbook
2. Quiz 3.7

Answer: see the textbook
3. Consider the following stock portfolio:

Stock	Shares	Price	Value	Beta
FV	30,000	34	1,020,000	1.25
GC	25,000	22	550,000	1.00
YH	20,000	17	340,000	0.80

If the S\&P 500 index currently is standing at 1,000 ($\$ 250$ time the index is the contract size), how many futures contracts must be bought or sold to hedge 50% of the market risk of this portfolio? How about reducing beta by 75% ?

Beta of the portfolio (value weighted average) $=1.098 ; \mathrm{F}=1,000 * 250=\$ 250,000$
S = 1,020,000 + 550,000 + 340,000 = \$1,910,000
Optimal contract size $\mathrm{N}^{*}=1.098^{*}(1,910,000 / 250,000)=8.39$ contracts, a 50% hedge (or to reduce the portfolio beta to 0.55) means shorting 4 S\&P 500 index futures contracts To reduce beta by 75% (meaning to reduce the beta to 0.27) implies shorting 6 futures contracts

Chapter 4

1. Quiz 4.4

Answer: see the textbook

2. Quiz 4.5

Answer: see the textbook

Chapter 5

1. Quiz 5.3

Answer: see the textbook

2. Quiz 5.4

Answer: see the textbook

3. Problem 5.12

Suppose that the risk-free interest rate is 10% per annum with continuous compounding and that the dividend yield on a stock index is 4% per annum. The index is standing at 400, and the futures price for a contract deliverable in four months is 405. What arbitrage opportunities does this create? How can you arbitrage?

Answer: Theoretical futures price $\mathrm{F}=400 * \mathrm{e}^{(0.1-0.04)(4 / 12)}=408.08$ and the actual futures price in the market $\mathrm{F}=405<408.08$, which is undervalued

Arbitrage:
Today: buy futures contracts at 405; short sell stock index at 400 and deposit short sale proceeds at 10% for four months
After four months: collect 413.56; take the delivery and pay 405; return the asset plus dividend (5.37); arbitrage profit $=413.56-405-5.37=3.19$, PV of profit $=\$ 3.08$

Chapter 6

1. Quiz 6.2

Answer: see the textbook

2. Problem 6.9

Answer: $\mathrm{AI}=6 * 98 / 181=3.2468$ (there are 98 days between January 27 and May 5 and there are 181 days between January 27 and July 27)
Cash price $=110.5312+3.2468=113.7798$
3. Problem 6.10

Answer: Bond 1: net cost = 2.178
Bond 2: net cost $=2.652$
Bond 3: net cost $=2.946$
Bond 4: net cost $=1.874$
Bond 4 is the cheapest to deliver

Chapter 7

1. Quiz 7.1

Answer: see the textbook
2. Quiz 7.3

Answer: see the textbook

