Finance 436 - Futures and Options Review Notes for Midterm Exam I

Chapter 1

1. Derivative securities: concepts
2. Futures and forward contracts: definitions and comparison

Exchange trading; contract size, delivery; default risk; marking to market
3. Options: concepts
4. Players in options and futures markets

Hedgers: reduce price risk (uncertainty)
Speculators: bet on price movement
Arbitrageurs: look for risk-free profit
5. Applications
6. Examples discussed in class and assignments

Chapter 2

1. Specification of futures contracts

Opening vs. closing a futures position
Long vs. short a futures position
Underlying asset
Contract size (will be given if needed)
Delivery month
Daily price limit
Position limit
Settlement price: concepts
Open interest: concepts and calculations
2. Convergence of futures price to spot price: concepts and proof
3. Margins: concepts and calculations

Initial margin
Maintenance margin
Margin call
Variation margin
4. Marking to market process: concepts and calculations
5. Orders and applications

Market order
Limit order
Stop or stop-loss order
Stop-limit order
Day order
Open order
6. Cash settlement: concepts
7. Forward contracts: profit/loss diagrams
8. Examples discussed in class and assignments

Chapter 3

1. Hedging: concepts

Long hedging vs. short hedging
2. Basis risk: definitions and applications
3. Cross hedging

Hedge ratio: definition, estimation, and implication
Minimum variance hedge ratio: minimize the variance
Optional number of contracts
4. Hedging with stock index futures
5. Examples discussed in class and assignments

Chapter 4

1. Types of interest rates
2. Measuring interest rates
3. Zero rates
4. Bond pricing
5. Forward rates
6. Forward rate agreements
7. Term structure theories
8. Examples discussed in class and assignments

Sample Problems

Chapter 1

Problem 1-11
A cattle former expects to have 120,000 pounds of live cattle to sell in three months. The live cattle futures contract on the CME is for the delivery of 40,000 pounds of cattle. How can the former use the futures contracts to hedge?
Answers: to sell 3 three-month cattle futures contracts
Problem 1-33
Theoretical futures price $\mathrm{F}=1,800 * \mathrm{e}^{(0.05 * 1)}=\$ 1,892.28$
Since the actual futures price in the market is $2,000>1,892.288$, it is overpriced Today:
(1) Borrow $\$ 180,000$ at 5% to buy 100 ounces of gold at $\$ 1,800$
(2) Sell a futures contract on gold at $\$ 2,000$ per ounce (one year delivery)
(3) Store the gold

In one year:
(1) Make the delivery and collect $\$ 200,000$
(2) Repay the loan (principle plus interest) $\$ 189,228.80=180,000 * \mathrm{e}^{\left(0.0 .5^{*} 1\right)}$
(3) Take risk-free profit $=\$ 10,771.20$

Chapter 2

Quiz 2.3
Short position: if price drops, you gain; if price goes up, you lose
Margin call: lose $\$ 1,000$ for each contract in your margin account or price goes up by 20 cents per ounce (5,000 ounces per contract)

Problem 2.11
Long position: if price drops, you lose; if price goes up, you gain
Margin call: lose $\$ 1,500$ per contract in your margin account or price drops by 10
cents per pound (contract size is 15,000 pounds)
If the futures price drops below 150 cent per pound, you will receive a margin call
Making $\$ 2,000$ total or $\$ 1,000$ per contact: if the price rises by 6.67 cents

Chapter 3

Quiz 3.6: See the textbook for the answer
Quiz 3.7: See the textbook for the answer
Sample problem
Consider the following stock portfolio that is composed of three stocks:

Stock	Shares	Price	Value	Beta
FV	12,000	34	408,000	1.25
GC	25,000	22	550,000	1.00
YH	20,000	17	340,000	1.07

If the $\mathrm{S} \& \mathrm{P} 500$ index currently is standing at 400 ($\$ 500$ time the index is the contract size), how many futures contracts must be bought or sold to hedge 50% of the market risk of this portfolio?

Beta of the portfolio $($ value weighted average $)=1.097=1.10$
$\mathrm{F}=500 * 400=\$ 200,000$
$\mathrm{S}=408,000+550,000+340,000=\$ 1,298,000$
Optimal contract size $\mathrm{N}^{*}=7.12$ contracts
A 50% hedge (or to reduce the portfolio beta to 0.55) means shorting 3-4 S\&P 500 index futures contracts

Problem 3.23
Sixty futures contracts are used to hedge an exposure to the price of silver. Each futures contract is on 5,000 ounces of silver. At the time the hedge is closed out, the basis is $\$ 0.20$ per ounce. What is the effect of the basis on the hedger's financial position if (a) the trader is hedging the purchase of silver and (b) the trader is hedging the sale of silver?
Answer: The excess of the spot over the futures at the time the hedge is closed out is $\$ 0.20$ per ounce. If the trader is hedging the purchase of silver (long), the price paid is the futures price plus the basis. The trader therefore loses $60 \times 5,000 \times \$ 0.20=\$ 60,000$. If the trader is hedging the sales of silver (short), the price received is the futures price plus the basis. The trader therefore gains $\$ 60,000$.

Chapter 4

Quiz 4.1: See the textbook for the answer
Quiz 4.4: See the textbook for the answer
T-bonds are quoted as a percentage of $\$ 100$ face value (bid price is the price you receive if you sell the T-bond and offer (asked) price is the price you pay to buy the T-bond, more often T-bonds are traded in denominations of $\$ 1,000$)

Problem 4.12
A three-year bond provides a coupon of 8% semiannually and has a cash price of 104. What is the bond's yield?

Cash price $=$ quoted price + accrued interests
The bond pays $\$ 4$ in $6,12,18,24$, and 30 months, and $\$ 104$ in 36 months. The bond yield is the value of y that solves

$$
4 e^{-0.5 y}+4 e^{-1.0 y}+4 e^{-1.5 y}+4 e^{-2.0 y}+4 e^{-2.5 y}+104 e^{-3.0 y}=104
$$

Using the Goal Seek or Solver tool in Excel, we get $y=0.06407$ or 6.407%
Or you can calculate the yield to maturity (YTM), using semiannual compounding and then convert it to continuous compounding
$P M T=4, P V=-104, F V=100, N=6($ semiannual $)$, solve for $\mathrm{i} / \mathrm{y}=3.255 \%$ $\mathrm{YTM}=6.511 \%$

Convert it to continuous compounding to get

$$
y=\mathrm{m}^{*} \ln (1+6.511 \% / \mathrm{m})=2 * \ln (1+0.06511 / 2)=6.407 \%
$$

