
Problem Set 4

Theoretical Solid State Physics (SoSe2017)

Due: Due Thursday, May 18, 2017; at the beginning of class

Problem 1: Berry phase � an example

Consider a spin 1/2 in an adiabatically varying Zeeman �eld B(t), as described by the Hamiltonian

H = −B(t) · σ, (1)

where σ denotes the vector of Pauli matrices. Parametrize the magnetic �eld as

B = B(sin θ cosφ, sin θ sinφ, cos θ). (2)

(a) Find the eigenvectors of the Hamiltonian for an arbitrary, but �xed magnetic �eld. Make sure that
your result is single valued as function of the magnetic �eld.

(b) Use your result in (a) to compute the corresponding Berry connection. Relate your result explicitly to
the vector potential for a magnetic monopole which we encountered earlier.

(c) Compute the corresponding Berry curvature and show that the Berry phase accumulated when the
magnetic �eld varies in a closed loop is equal to half the solid angle subtended by the magnetic �eld loop.

Problem 2: Shortcuts to adiabaticity

Shortcuts to adiabaticity are currently a popular topic in research and address the following question:
Imagine that you �nd the adiabatic dynamics of some Hamiltonian H0(t) attractive and want to imple-
ment it (e.g., because there are no transitions between instaneous eigenstates |ψn(t)〉 with instantaneous
eigenenergies En(t)), but you do not have the patience to wait long enough so that the dynamics is re-
ally adiabatic. Then you would like to �nd a way to implement the adiabatic dynamics in a �nite (and
possibly short) time. One possibility is to search for a modi�ed Hamiltonian H(t) = H0(t) +H1(t) which
implements the desired adiabatic dynamics as its exact quantum dynamics. It turns out that this problem
can be solved quite generally.

(a) Show that the time evolution operator describing the adiabatic dynamics of H0(t) can be written as

U(t) =
∑
n

e−i
∫ t
0 dt′En(t′)+iγn(t)|ψn(t)〉〈ψn(0)|, (3)

where γn(t) = i
∫ t
0 dt

′〈ψn(t′)|∂t′ψn(t′)〉 denotes the Berry phase.

(b) Show that given a time evolution operator U(t), one can �nd the corresponding Hamiltonian for which
U(t) describes the exact quantum dynamics through

H(t) = i[∂tU ]U†. (4)

(c) Now insert the desired adiabatic time evolution operator from (a) into the general expression in (b) to
obtain

H1(t) = i
∑
n

(|∂tψn〉〈ψn| − |ψn〉〈ψn|∂tψn〉〈ψn|) . (5)

for the so-called counter-diabatic term H1(t).

(d) Explicitly evaluate the counter-diabatic term for the system which you treated in problem 1.

This version of shortcuts to adiabaticity is due to Michael Berry, J. Phys. A: Math. Theor., 42 365303
(2009) (which you can turn to if you need help in solving this problem). Such protocols can actually be
implemented experimentally, see, e.g., M.G. Bason et al., Nat. Phys. 8, 147 (2012).
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Problem 3: Dimerized site energies

Solve for the band structure of the 1D tight-binding Hamiltonian

H =
∑
j

{
(−1)jε|j〉〈j| − t[|j〉〈j + 1|+ |j + 1〉〈j|]

}
(6)

with dimerized site energies ±ε. At half �lling, is the model a metal or an insulator?
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