
Problem Set 4

Quantum Field Theory and Many Body Physics (SoSe2016)

Due: Thursday, May 19, 2016 before the beginning of the class

In this problem set, we learn how to compute path integrals explicitly. For the most part, the only path

integrals that can be computed exactly are those for a free particle and for the harmonic oscillator, and

it is these path integrals which we want to do. To do this, we exploit that the semiclassical calculation is

exact in these cases. In addition, we will learn how to do path integrals for spin.

Problem 1: Path integral for a free particle (10+10+5 points)

Calculate the path integral for a free particle in one dimension, i.e., compute the propagator i G(xt, x′t′)
for H = p2/2m. When written in its discrete form, the path integral for this problem becomes a Gaussian

integral which we can compute explicitly.

(a) We start from the con�guration-space path integral and write the path as

x(τ) = xcl(τ) + δx(τ). (1)

Here,

xcl(τ) = x′ +
x− x′

t− t′
(τ − t′) (2)

is the classical path. By Hamilton's principle, the classical path extremizes the action. Explain why this

implies that

S =

∫ t

t′
dτ

1

2
mẋ2 = Scl +

∫ t

t′
dτ

1

2
mδẋ2 (3)

with the classical action

Scl =
1

2
m

(x− x′)2

t− t′
. (4)

Now, write the path integral in its discrete form and show that

iG(xt, x′t′) =
( m

2πi∆t

)N/2 (2π)(N−1)/2√
det[−iM ]

eiScl , (5)

with ∆t = t−t′
N , Scl = m

2
(x−x′)2
t−t′ , and M the (N − 1)× (N − 1) matrix

M =
m

∆t



2 −1 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1
... 0

. . .
. . .

. . .
...

. . . −1
−1 2


. (6)

(b) We now need to compute detM . Let us actually consider the slightly more general N × N matrix

with matrix elements

(MN )ij =


2 coshu i = j

−1 i = j ± 1

0 else

. (7)
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First show that detMN satis�es the recursion relation

detMN = 2 coshu detMN−1 − detMN−2 (8)

detM1 = 2 coshu (9)

detM2 = 4 cosh2−1. (10)

Solve this recursion relation with the ansatz detMN = a eNn + b e−Nn, to show that

detMN =
sinh(N + 1)u

sinhu
. (11)

(c) Now use the result of (b) to show that

iG(xt, x′t′) =
( m

2πi∆t

)1/2
eiScl(xt,x

′t′), (12)

which is the �nal result.

Note that this way of solving the path integral relies on a semiclassical approximation, which turns out

to be exact in this simple problem. In this approximation, one expands the path about the classical path,

x = xcl + δx. Since the action is stationary for the classical path, the expansion of the action in δx has

no linear term. Moreover, we already argued in the lecture that the vicinity of the classical path gives

the dominant contribution. Expanding the action up to the quadratic term in δx, we recover a Gaussian

integral which can be performed. Mathematically, this is known as a stationary phase approximation since

the exponent becomes stationary for the classical path.

Problem 2: Path integral for the harmonic oscillator (25 points)

Use the same approach as in the previous problem to derive the path integral for the harmonic oscillator,

L =
1

2
mẋ2 − 1

2
mω2x2. (13)

You should �nd the result iG(xt, x′0) = AeiScl , with

A =
( mω

2πi sinωt

)1/2
, and Scl =

mω

2 sinωt

[(
x2 + x′2

)
cosωt− 2xx′

]
. (14)

Problem 3: Path integrals for spin (5+5+5+5+5 points)

In this problem we want to derive a path integral representation for a spin-12 Hamiltonian, e.g.,

H = −gσ ·B(t), (15)

where the components σi of σ denote the Pauli matrices. Such path integrals are useful to study the

quantum mechanics of spin models such as the Heisenberg model.

(a) Consider the unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ) in the radial direction in spherical coordi-

nates. Now, consider the spin-up eigenvectors for a Zeeman �eld along n̂ as de�ned by the eigenvalue

equation

n̂ · σ|n̂〉 = |n̂〉. (16)

Show that when written in the usual spin basis with the quantization axis along the z axis, this is solved

by the eigenvector

|n̂〉 =

(
e−iφ cos θ2

sin θ
2

)
. (17)
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Note also that the eigenvalue equation de�nes |n̂〉 only up to an overall phase.

(b) Show that the |n̂〉 de�ne an overcomplete set of states, i.e., that

1 =

∫
d2n̂

2π
|n̂〉〈n̂|, (18)

where d2n̂ = sin θ dθ dφ denotes the solid angle corresponding to the unit vector n̂. You can show this

by evaluating the integrals explicitly for the individual matrix elements in the usual spin basis. The set

of states n̂ is overcomplete because is contains more than the minimum number of required basis states

(which would be two for a spin-12 problem).

(c) Consider the propagator for H = 0,

iG(n̂t, n̂′t′) = 〈n̂|U(t, t′)|n̂′〉, (19)

with U(t, t′) = 1. Following the derivation of the path integral, insert resolutions of the identity in terms

of the overcomplete sets |n̂(tj)〉 at the N − 1 equally spaced intermediate times t1, . . . , tN−1 (also de�ne

t0 = t′ and tN = t). Show that

iG(n̂t, n̂′t′) =

∫ [
d2n̂(τ)

2π

]
ei

∫ t
t′ dτ i〈n̂(τ)|

d
dt
|n̂(τ)〉. (20)

Give explicit discrete versions of the action and the integration measure of this path integral. Note that

remarkably, the action

S = i

∫ t

t′
dτ i〈n̂(τ)| d

dτ
|n̂(τ)〉 = i

∫ t

t′
dτ

1

2
φ̇(1 + cos θ) (21)

is non-zero even for a vanishing Hamiltonian! To arrive at this result, you may �nd the following little

calculation for the overlap of the spin states at two neighboring times useful,

〈n̂(tj)|n̂(tj−1)〉 = 1− 〈n̂(tj)(|n̂(tj)〉 − |n̂(tj−1)〉)
= exp{−〈n̂(tj)(|n̂(tj)〉 − |n̂(tj−1)〉)}. (22)

Explain in which sense the second equality is valid.

(d) Show that the action generalizes to

S =

∫ t

t′
dτ

(
i〈n̂(τ)| d

dτ
|n̂(τ)〉+ gn̂(τ) ·B(τ)

)
(23)

for H = −gσ ·B(τ). To arrive at this result, write the time evolution operator for this Hamiltonian as a

time-ordered exponential (as usual for time-dependent Hamiltonians � see the derivation of linear-response

theory in the lecture). You may want to use the identity (prove!)

〈n̂|σ|n̂〉 = n̂. (24)

(e) Show that Hamilton's principle for the action (23) correctly reproduces the classical equation of motion

of a spin
˙̂n = 2gn̂×B(t). (25)

(You may �nd it useful to parametrize the unit vector n̂ in terms of polar and azimuthal angles as these

can be varied independently.) Note that this equation of motion is quite di�erent from the usual equations

of motion in classical mechanics. It is a �rst-order di�erential equation in time and the force involves a

vector product. (The latter also appears for particles in a magnetic �eld whose path-integral description

actually has some similarities with the present problem.)

Remark: To understand the physics of the action for spin more deeply, you may want to learn (or remember)

the concept of a Berry phase in quantum mechanics and recognize that the �rst term of the action (23) is

just such a Berry phase.
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