
Problem Set 2

Quantum Field Theory and Many Body Physics (SoSe2016)

Due: Thursday, May 5, 2016 before the beginning of the class

In this problem set, we continue our discussion of Gaussian integrals by introducing the concept of gen-
erating function(al)s of moments and cumulants which are widely used in statistics and quantum �eld
theory. We also �ll in some gaps in our treatment of the Jordan-Wigner transformation and discuss
further applications of this technique.

Problem 1: Cumulant expansion and generating functionals (10+10+5+5 points)

In this problem, we want to discuss some basics of generating functions for probability distributions and
generalize this concept to �eld theories. Generating functions are a standard tool in probability theory.
Consider a random variable x with probability distribution P (x) and denote the corresponding averages
by 〈. . .〉. Then, the moment generating function

G(J) = 〈eJf(x)〉 (1)

succinctly summarizes all moments 〈[f(x)]n〉 (n = 0, 1, 2, . . .) of some function f(x). Indeed,

〈[f(x)]n〉 = dn

dJn
G(J)

∣∣∣∣
J=0

(2)

or

G(J) =
∞∑
n=1

Jn

n!
〈[f(x)]n〉. (3)

For the special case of f(x) = x, the moments are just the averages 〈xn〉.
Instead of the moments, it is often useful to characterize the probability distribution through its cumulants.
Examples are the average C1 = 〈f(x)〉, which is the �rst cumulant, or the variance C2 = 〈[f(x)]2〉−〈f(x)〉2,
which is the second cumulant. It turns out that the entire series of cumulants Cn is generated by the
cumulant generating functional

W(J) = lnG(J) = ln〈eJf(x)〉 (4)

through

Cn =
dn

dJn
W(J)

∣∣∣∣
J=0

(5)

and

W(J) =
∞∑
n=1

Jn

n!
Cn. (6)

(a) Give explicit expressions for the �rst four cumulants C1, C2, C3, C4 in terms of the moments of f(x).
The third cumulant is known as skewness, the fourth as kurtosis.

(b) Compute all cumulants of x for a Gauss distribution

P (x) =
1√
2πσ

e−
x2

2σ . (7)
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and all cumulants of n (n = 1, 2, 3, . . .) for the Poisson distribution

P (n) = 1
n! e
−λ λn, (8)

where n = 0, 1, 2, .... You should do this by explicitly computing the cumulant generating functions for
these distributions.

(c) Now consider a multivariate complex Gaussian distribution as introduced in problem 3 of problem set
1,

P [φ] =
exp

{
−φ†Mφ

}∫
[dφ][dφ∗] exp

{
−φ†Mφ

} (9)

and introduce the moment generating functional

G[J] = 〈exp{J†φ+ φ†J}〉 (10)

as well as the cumulant generating functional

W[J] = ln〈exp{J†φ+ φ†J}〉. (11)

Compute both of these generating functions explicitly (i.e., perform the average). Use this to compute
the second moment 〈φ∗iφj〉 and the second cumulant 〈φ∗iφj〉 − 〈φ∗i 〉〈φj〉.
(d) Now consider the slightly modi�ed multivariate complex Gaussian distribution,

P [φ] =
exp

{
−(φ− φ0)

†M(φ− φ0)
}∫

[dφ][dφ∗] exp {−(φ− φ0)
†M(φ− φ0)}

(12)

with some �xed φ0. Compute the generating functions as de�ned in (c). Use your result to obtain the
�rst and second moments and cumulants. (The �rst average and cumulant are just the average 〈φi〉).

Problem 2: Jordan-Wigner transformation (10+15 points)

A single fermionic state can be empty or occupied. Similarly, a spin-1/2 can point either up or down.
This suggests that one might be able to map a spin-1/2 degree of freedom to a fermion mode. However, a
little thought reveals that this is not so simple. The problem is that operators corresponding to di�erent
spins commute while di�erent fermion operators anticommute. In this problem, we will establish that
one can in fact �nd an exact and useful general mapping between spins and fermions in one dimension

by attaching an additional string operator to a fermion. This transformation is known as Jordan-Wigner
transformation.

(i) Let's start with a single spin-1/2 degree of freedom and write the spin operator in terms of a fermion
operator. The spin operator is de�ned by

Sj =
1

2
σj , (13)

where j = x, y, z and σj denotes a Pauli matrix. The spin operators satisfy the angular-momentum algebra

[Sj , Sk] = iεjklSl (14)

and the anticommutation relations

{Sj , Sk} = 1

2
δjk. (15)

We will also use the usual raising and lowering operators S± = Sx ± iSy.
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Now we identify the spin-down state | ↓〉 (satisfying Sz| ↓〉 = −(1/2)| ↓〉) with the vacuum state |0〉 for a
fermion operator f (i.e., f |0〉 = 0) and the spin-up state | ↑〉 with the occupied fermion state |1〉 = f †|0〉.
Show that we can make the identi�cations

Sx =
1

2

(
f + f †

)
(16)

Sy =
i

2

(
f − f †

)
(17)

Sz = f †f − 1

2
(18)

S+ = f † (19)

S− = f. (20)

Con�rm that these operators indeed satisfy the commutation and anticommutation relations of the spin
operators.

(ii) Now consider a one-dimensional lattice with sites labeled by j = . . . − 2,−1, 0, 1, 2 . . .. De�ne a
spin operator Sj and a fermion operator fj on every site. We can no longer directly use the previous
mapping between spin and fermion because the spin operators belonging to di�erent sites commute while
the corresponding fermion operators anticommute. To �x this, consider the string operator

eiφj = eiπ
∑

k<j nk , (21)

where nk = f †kfk. Explain why this is a hermitian operator. Now show that a spin can be thought of as a
fermion with an attached string operator by verifying that the Jordan-Wigner transformation

Szj = f †j fj −
1

2
(22)

S+
j = f †j e

iφj (23)

S−j = fje
−iφj (24)

preserves the (anti)commutation relation on each site and correctly yields commuting spin operators on
di�erent sites. You may �nd it helpful to �rst show that the string operator anticommutes with each
fermion operator to the left of its open end and commutes with fermion operators at or to the right of its
open end,

{fk, eiφj} = 0 ; k < j (25)

[fk, e
iφj ] = 0 ; k ≥ j (26)

Problem 3: Quantum XXZ model (5+10+10 points)

In this problem, we want to use the Jordan-Wigner transformation to discuss the XXZ Hamiltonian in
one dimension,

H = −
∑
j

{J [Sxj Sxj+1 + Syj S
y
j+1] + JzS

z
jS

z
j+1}. (27)

For the isotropic case with Jz = J , this is known as the quantum Heisenberg model. For Jz = 0, the
model becomes the quantum xy model. For J, Jz > 0, the model describes a ferromagnet in which it is
energetically favorable for neighboring spins to be parallel. Antiferromagnetic coupling corresponds to
J, Jz < 0. We can also write this Hamiltonian as

H = −
∑
j

{
J

2
[S+
j S
−
j+1 + S+

j+1S
−
j ] + JzS

z
jS

z
j+1

}
. (28)
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(i) Show that the Jordan-Wigner transformation maps the XXZ Hamiltonian H to

H = −J
2

∑
j

[f †j+1fj + f †j fj+1]− Jz
∑
j

(nj −
1

2
)(nj+1 −

1

2
). (29)

This Hamiltonian describes spinless fermions in one dimension with nearest-neighbor hopping and inter-
actions.

(ii) First consider the xy model with Jz = 0. We see that this model maps to non-interacting fermions
and can thus be readily solved exactly. Speci�cally, the xy model maps to the fermion Hamiltonian

H = −J
2

∑
j

[f †j+1fj + f †j fj+1]. (30)

Show that this simple tight-binding Hamiltonian can be diagonalized by transforming to the momentum
representation (translation invariance),

H =
∑
k

εk c
†
kck (31)

with εk = −J cos k and k ∈ [−π, π]. Give explicit expressions for the operators ck. Discuss the ground
state of the fermion model and its excitation spectrum. (Be sure to notice that some of the single-particle
energies are negative!) Use this to compute the ground state energy of the original xy model and to explain
that its excitation spectrum is characterized by a linear magnon dispersion. Does the ground state have
a spontaneous magnetization?

(iii) Next consider the isotropic Heisenberg model. In this case, we cannot easily �nd an exact solu-
tion because of the nearest-neighbor interaction between the fermions. Nevertheless, we can discuss the
properties of this model approximately. Let us �rst neglect the interaction term

∑
j njnj+1 and discuss

the resulting non�interacting Hamiltonian. First �nd the single-particle spectrum of this non-interacting
problem. You should �nd that the ground state corresponds to the fermion vacuum which is equivalent to
all spins pointing in the spin-down direction. Thus, we actually �nd a ferromagnetic ground state in this
model. Show that the magnon dispersion above this ground state has a quadratic dispersion (unlike the
xy model which had a linear dispersion). Now return to the interacting Hamiltonian and explain why one
may be tempted to conclude that the interaction term is weak and that it may be a good approximation
to neglect it.
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