
Problem Set 11

Quantum Field Theory and Many Body Physics (SoSe2016)

Due: Monday, July 7, 2016 at the beginning of the lecture

In this problem set, we discuss response functions within the functional-integral approach to RPA, discuss

the BCS gap equation at �nite temperature, and work out some details of the microscopic derivation of

Ginzburg-Landau theory.

Problem 1: Density-density response function in RPA (5 + 5 + 10 + 5 points)

In this problem, we discuss the density-density response function in the functional integral approach to

RPA. Consider the action of the jellium model

S[J ] =

∫
dτdr

∫
dτ ′dr′

{
ψ∗(rτ)G0(rτ ; r′τ ′)ψ(r′τ ′) +

1

2
v(rτ ; r′τ ′)n(rτ)n(r′τ ′)

}
−
∫

dτdrdτn(rτ)J(rτ)

(1)

with v(rτ ; r′τ ′) = v(r− r′)δ(τ − τ ′). Here, J(rτ) is a source �eld which allows us to derive correlators of

the electron density (relative to the positive background) n(rτ) = ψ∗(rτ)ψ(rτ)−n0 by means of functional

derivatives of the grand potential Ω[J ].

(a) Use the Kubo formula to identify the correct correlation function describing the (reducible) polarization

operator

ρ(rτ) = −e2

∫
dτ ′dr′Π(rτ ; r′τ ′)ϕ(r′τ ′), (2)

where ϕ(rτ) is an applied electric potential and ρ(rτ) = en(rτ) is the induced charge density.

(b) Formulate the correct analytical continuation which yields the response function Π from a correspond-

ing time-ordered correlation function. Give an expression for this correlation function as a functional

derivative with respect to the source �eld J .

(c) Follow the functional integral approach to RPA, now including the additional source term in the action.

You should decouple the interaction, integrate out the fermions, expand the resulting action to quadratic

order in the Hubbard-Stratonovich �eld φ, and �nally perform the integral over φ. Now use your result to

obtain the response function Π in terms of the (irreducible) polarization operator Π0 introduced in class,

Π = [Π0
−1 + v]−1. (3)

(d) Use the explicit expression for Π0 in terms of Green functions, pass to momentum and frequency

representation, and perform the Matsubara sum. Show that the resulting expression is the expression

derived for the polarization operator Π0 in an earlier problem set.

Problem 2: BCS gap equation at �nite temperature (25 points)

In class, we derived the BCS gap equation

∆ = g
1

V

∑
k

1

β

∑
Ω

∆

Ω2 + ξ2
k + ∆2

, (4)

where Ω is a fermionic Matsubara frequency. Perform the sum over Ω and derive an (implicit) expression

for the gap ∆(T ) as function of temperature T as well as for the critical temperature Tc. Determine how
does ∆ vanishes at Tc. What is the order parameter exponent β?
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Problem 3: Ginzburg-Landau theory (5+10+10 points)

As sketched in class, one can derive Ginzburg-Landau theory from the e�ective action which we obtained

by decoupling the attractive interaction. In this problem, we �ll in some of the details by computing the

prefactor of the quadratic term of the Ginzburg-Landau functional. (You are welcome to extend this to

include the derivative and quartic terms or even to include vector potentials if you like.)

The considerations start from the action which we obtained after integrating out the fermions,

S =

∫
dτdr

|∆|2

g
− tr ln{1 + G0∆τ+ + G0∆∗τ−} (5)

for the order parameter �eld ∆(rτ).

(a) Explain the basic idea of deriving Ginzburg-Landau theory from this action, speci�cally why (and

under which conditions) one can expand S in powers of ∆, why odd powers are absent, why one has to

include the quartic term, why we can neglect the dependence of ∆ on imaginary time, and why we can

restrict attention to low-order derivatives (or equivalently slow spatial variations).

(b) Now expand the action to quadratic order in ∆ and derive explicit expressions for the prefactor of

both the |∆|2 and the |∇∆|2 terms, assuming that one can neglect the τ dependence of ∆.

(c) Use explicit expressions for G0 in frequency and momentum representation and perform the Matsubara

and momentum sums to obtain an expression for the prefactor of the |∆|2 term. You should �nd

βν0
T − Tc
Tc

|∆|2. (6)
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