
Problem Set 1

Quantum Field Theory and Many Body Physics (SoSe2016)

Due: Thursday, April 28, 2016 before the beginning of the class

One of the most important techniques of quantum �eld theory are Gaussian integrals. In this problem set,
we want to discuss Gaussian integrals over real and complex variables. We will use the results over and
over again throughout the class. The importance of doing this problem set carefully cannot be overstated.

Many Gaussian integrals of quantum �eld theory are functional integrals over continuous �elds. Frequently,
however, these integrals can be reduced to involve only a �nite and discrete number of integration variables.
The simplest way is to put the �eld theory on a lattice, say with periodic boundary conditions. Then,
there are only a �nite number of lattice points at which the �eld is de�ned. This is the case that we
want to discuss at length in this problem set. It actually turns out that ignoring mathematical subtleties,
appropriate versions of our results remain valid for integrals over continuous �elds.

Problem 1: Gaussian integrals (5+5+10 points)

It is actually very instructive to start with the very simplest case of Gaussian integrals over a single

variable. This will be done in this problem.

(a) Let's begin with showing that ∫ ∞
−∞

dx exp

(
−1

2
ax2
)

=

√
2π

a
(1)

for any a > 0. You may remember that the trick to do this integral is to consider its square and to
introduce polar coordinates.

(b) Now add a linear term to the exponent. This integral can be reduced to the previous one by completing
the square in the exponent and shifting the integration variable. Do this to �nd∫ ∞

−∞
dx exp

(
−1

2
ax2 + bx

)
=

√
2π

a
exp

(
b2

2a

)
. (2)

(c) The last integral can be used to compute many more integrals. Starting from this integral, show that∫ ∞
−∞

dxxn exp

(
−1

2
ax2
)

=

√
2π

a
×

{
0 n odd

(n−1)!!
an/2 n even

. (3)

Here, (n− 1)!! = 1 · 3 · 5 · . . . · (n− 1) denotes the product over all odd numbers up to (n− 1). The basic
idea is to use the variable b in Eq. (2) as a �source �eld,� i.e., to take n derivatives with respect to b on
both sides of Eq. (2) and to subsequently set b = 0. Since the integral is highly convergent, one can freely
interchange integration and di�erentiation on the left-hand side. [Perhaps the simplest way to perform the
derivatives of the right-hand side is to expand exp(b2/2a) into a Taylor series and to take the derivatives
term by term. (Only a single term contributes for b = 0.)]

We can look at Eq. (3) in another way by treating the Gaussian factor as a probability distribution. Then,
we can de�ne the averages

〈xn〉 =

∫∞
−∞ dxxn exp

(
−1

2ax
2
)∫∞

−∞ dx exp
(
−1

2ax
2
) (4)

and Eq. (3) gives the result

〈xn〉 =

{
0 n odd

(n−1)!!
an/2 n even

. (5)
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We will see below that the combinatorial factor (n− 1)!! is just the number of ways in which one can pair
the n factors of x. The �rst x can be paired with n− 1 other factors. One of the remaining n− 2 factors
can then be paired with n− 3 factors and so on. Then, we can write this as

〈xn〉 = (number of ways to pair n factors of x)× 〈x2〉n/2. (6)

for even n. This is an example of a very general result for Gaussian probability distributions which is
known as Wick's theorem and which underlies the derivation of Feynman diagrams.

Problem 2: Multidimensional Gaussian integrals (10+10+5+5 points)

Now, we want generalize the results of the �rst problem to Gaussian integrals over N variables x1, . . . , xN .
For notational simplicity, it is sometimes convenient to collect these N variables into a vector x =
(x1, x2, . . . , xN ).

(a) First, consider the integral

∫
dx1dx2 . . . dxN exp

−1

2

N∑
i,j=1

Mijxixj

 , (7)

where the integrals over all xj extend from −∞ to ∞. We can consider the real Mij as the entries of a
symmetric (why?) matrix M. Then, we can write the quadratic form in the exponent in vector notation
as
∑N

i,j=1Mijxixj = xTMx. Now, show that∫
[dx] exp

(
−1

2
xTMx

)
=

√
(2π)N

detM
, (8)

where we introduced the shorthand [dx] = dx1dx2 . . . dxN .

The basic idea to do this integral is to diagonalize M = OTΛO, where Λ is a diagonal and O an orthogonal
matrix. Now, introduce new integration variables such that the integral decouples into N independent one-
dimensional Gaussian variables. Be sure to consider the Jacobian of this change of integration variables.
Also discuss the conditions that the matrix M has to satisfy for the integral to be well de�ned.

(b) Next, we introduce a linear term JTx =
∑N

j=1 Jjxj into the exponent with a �source �eld� J =
(J1, J2, . . . , JN ). Show that the resulting integral becomes∫

[dx] exp

(
−1

2
xTMx + JTx

)
=

√
(2π)N

detM
exp

(
1

2
JTM−1J

)
. (9)

To show this, you can follow closely the corresponding calculation for the single-variable Gaussian integral
in Eq. (2). The only di�erence is that you have to be careful with the ordering of factors in the present
case because matrix multiplications do not commute.

(c) The result in Eq. (9) can again be used to compute many other integrals. Let us introduce averages
by

〈. . .〉 =

∫
[dx] . . . exp

(
−1

2x
TMx

)∫
[dx] exp

(
−1

2x
TMx

) (10)

as in problem 1. Here, . . . stands for the function of the xj which we want to average. Now, use Eq. (9)
to show that

〈xixj〉 = [M−1]ij . (11)

To derive this result, you should again take derivatives of Eq. (9) with respect to appropriate elements of
J. This is another very important result that we will use over and over again.
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(d) Finally, you are in a position to derive Wick's theorem

〈xj1xj2 . . . xj2n〉 =
∑
P

〈xP1xP2〉 . . . 〈xP2n−1xP2n〉. (12)

Here, P refers to the set of all distinct pairings (P1, P2), (P3, P4), . . . (P2n−1, P2n) of the indices j1, j2, . . . , j2n.
One of these pairings is for instance (j1, j2), (j3, j4), . . . (j2n−1, j2n), another (j1, j2n), (j2, j2n−1), . . . (jn, jn+1).
As explained above, there are altogether (2n− 1)!! distinct pairings.

Problem 3: Complex Gaussian integrals (10+5+5+5 points)

In problem 1, we derived the Gaussian integral∫ N∏
n=1

dφn exp

{
−1

2
φTMφ + jTφ

}
=

(2π)N/2

(det M)1/2
exp

{
1

2
jTM−1j

}
(13)

for a positive de�nite, real and symmetric N×N matrix M. In this problem, we want to consider integrals
over complex variables φ = (φ1, . . . , φN ). Here, you should not think of contour integrals in the complex
plane! Instead, these integrals are simply independent integrals over the real and imaginary parts of the
φj . One usually writes the integration measure in terms of φj and its complex conjugate φ∗j . This should
be interpreted as

dφjdφ
∗
j = 2 dReφj dImφj . (14)

This de�nition is motivated by formally computing the Jacobian for passing from φj and φ
∗
j to Reφj and

Imφ∗j as integration variables. Using φj = Reφj + iImφj and φ
∗
j = Reφj − iImφj , this Jacobian is∣∣∣∣ ∂(φn, φ

∗
n)

∂(Reφn, Imφn)

∣∣∣∣ = 2. (15)

We will also use the shorthand notation [dφ][dφ∗] = dφ1dφ
∗
1 . . . dφNdφ∗N for the integration measure.

(a) Now show that the complex Gaussian integral gives∫
[dφ][dφ∗] exp

{
−φ†Mφ + J†φ + φ†J

}
=

(2π)N

detM
exp

{
J†M−1J

}
(16)

This is very similar to the result of the Gaussian integral over real variables except that the prefactor on
the right hand side does not involve a square root. This is just a consequence of the fact that we are
integrating over twice as many variables, namely N real and N imaginary parts.

Finally, we need to comment on the matrix M. Since M enters the integrand as a quadratic form and
the integrand should be real, the matrix M can be taken as Hermitian. Then, M can be diagonalized by
a unitary transformation with all eigenvalues being real. Comment on the conditions under which the
Gaussian integral is well de�ned.

(b) We can again de�ne averages over the complex �elds φ through

〈. . .〉 =

∫
[dφ][dφ∗] . . . exp

{
−φ†Mφ

}∫
[dφ][dφ∗] exp

{
−φ†Mφ

} . (17)

Use the result of (a) to show that

〈φ∗iφj〉 = [M−1]ij . (18)

What would you get if you were to compute 〈φiφj〉 or 〈φ∗iφ∗j 〉?
(c) Now use the results of (a) and (b) to formulate Wick's theorem for complex Gaussian integrals, i.e.,
explain how to express any average of the form〈

φ∗i1 . . . φ
∗
inφj1 . . . φjn

〉
(19)

in terms of the 〈φ∗iφj〉. Also explain what happens for averages with di�erent numbers of φj and φ
∗
j .
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