
Problem Set 8

Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, June 8, 2015 at the beginning of the lecture

In this problem set, we study the relation between spin 1/2 and fermions. We also introduce important
models of magnetism and discuss them in one spatial dimension.

Problem 1: Jordan-Wigner transformation (10+15 points)

A single fermionic state can be empty or occupied. Similarly, a spin-1/2 can point either up or down.
This suggests that one might be able to map a spin-1/2 degree of freedom to a fermion mode. However, a
little thought reveals that this is not so simple. The problem is that operators corresponding to di�erent
spins commute while di�erent fermion operators anticommute. In this problem, we will establish that
one can in fact �nd an exact and useful general mapping between spins and fermions in one dimension

by attaching an additional string operator to a fermion. This transformation is known as Jordan-Wigner
transformation.

(i) Let's start with a single spin-1/2 degree of freedom and write the spin operator in terms of a fermion
operator. The spin operator is de�ned by

Sj =
1

2
σj , (1)

where j = x, y, z and σj denotes a Pauli matrix. The spin operators satisfy the angular-momentum algebra

[Sj , Sk] = iεjklSl (2)

and the anticommutation relations

{Sj , Sk} =
1

2
δjk. (3)

We will also use the usual raising and lowering operators S± = Sx ± iSy.
Now we identify the spin-down state | ↓〉 (satisfying Sz| ↓〉 = −(1/2)| ↓〉) with the vacuum state |0〉 for a
fermion operator f (i.e., f |0〉 = 0) and the spin-up state | ↑〉 with the occupied fermion state |1〉 = f †|0〉.
Show that we can make the identi�cations

Sx =
1

2

(
f + f †

)
(4)

Sy =
i

2

(
f − f †

)
(5)

Sz = f †f − 1

2
(6)

S+ = f † (7)

S− = f. (8)

Con�rm that these operators indeed satisfy the commutation and anticommutation relations of the spin
operators.

(ii) Now consider a one-dimensional lattice with sites labeled by j = . . . − 2,−1, 0, 1, 2 . . .. De�ne a
spin operator Sj and a fermion operator fj on every site. We can no longer directly use the previous
mapping between spin and fermion because the spin operators belonging to di�erent sites commute while
the corresponding fermion operators anticommute. To �x this, consider the string operator

eiφj = eiπ
∑

k<j nk , (9)
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where nk = f †kfk. Explain why this is a hermitian operator. Now show that a spin can be thought of as a
fermion with an attached string operator by verifying that the Jordan-Wigner transformation

Szj = f †j fj −
1

2
(10)

S+
j = f †j e

iφj (11)

S−j = fje
−iφj (12)

preserves the (anti)commutation relation on each site and correctly yields commuting spin operators on
di�erent sites. You may �nd it helpful to �rst show that the string operator anticommutes with each
fermion operator to the left of its open end and commutes with fermion operators at or to the right of its
open end,

[fk, e
iφj ] = 0 ; k < j (13)

{fk, eiφj} = 0 ; k ≥ j (14)

Problem 2: Quantum XXZ model (5+10+10 points)

In this problem, we want to use the Jordan-Wigner transformation to discuss the XXZ Hamiltonian in
one dimension,

H = −
∑
j

{J [Sxj S
x
j+1 + Syj S

y
j+1] + JzS

z
jS

z
j+1}. (15)

For the isotropic case with Jz = J , this is known as the quantum Heisenberg model. For Jz = 0, the
model becomes the quantum xy model. For J, Jz > 0, the model describes a ferromagnet in which it is
energetically favorable for neighboring spins to be parallel. Antiferromagnetic coupling corresponds to
J, Jz < 0. We can also write this Hamiltonian as

H = −
∑
j

{
J

2
[S+
j S
−
j+1 + S+

j+1S
−
j ] + JzS

z
jS

z
j+1

}
. (16)

(i) Show that the Jordan-Wigner transformation maps the XXZ Hamiltonian H to

H = −J
2

∑
j

[f †j+1fj + f †j fj+1]− Jz
∑
j

(nj −
1

2
)(nj+1 −

1

2
). (17)

This Hamiltonian describes spinless fermions in one dimension with nearest-neighbor hopping and inter-
actions.

(ii) First consider the xy model with Jz = 0. We see that this model maps to non-interacting fermions
and can thus be readily solved exactly. Speci�cally, the xy model maps to the fermion Hamiltonian

H = −J
2

∑
j

[f †j+1fj + f †j fj+1]. (18)

Show that this simple tight-binding Hamiltonian can be diagonalized by transforming to the momentum
representation (translation invariance),

H =
∑
k

εk c
†
kck (19)

with εk = −J cos k and k ∈ [−π, π]. Give explicit expressions for the operators ck. Discuss the ground
state of the fermion model and its excitation spectrum. (Be sure to notice that some of the single-particle
energies are negative!) Use this to compute the ground state energy of the original xy model and to explain
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that its excitation spectrum is characterized by a linear magnon dispersion. Does the ground state have
a spontaneous magnetization?

(iii) Next consider the isotropic Heisenberg model. In this case, we cannot easily �nd an exact solu-
tion because of the nearest-neighbor interaction between the fermions. Nevertheless, we can discuss the
properties of this model approximately. Let us �rst neglect the interaction term

∑
j njnj+1 and discuss

the resulting non�interacting Hamiltonian. First �nd the single-particle spectrum of this non-interacting
problem. You should �nd that the ground state corresponds to the fermion vacuum which is equivalent to
all spins pointing in the spin-down direction. Thus, we actually �nd a ferromagnetic ground state in this
model. Show that the magnon dispersion above this ground state has a quadratic dispersion (unlike the
xy model which had a linear dispersion). Now return to the interacting Hamiltonian and explain why one
may be tempted to conclude that the interaction term is weak and that it may be a good approximation
to neglect it.

Problem 3: Transverse �eld Ising model (5+10+10 points)

The simplest spin model exhibiting a quantum phase transition (i.e., a transition between di�erent zero-
temperature phases as a function of some parameter in the Hamiltonian) is the transverse �eld Ising
model

H = −J
∑
j

Sxj S
x
j+1 − h

∑
j

Szj (20)

in one dimension.

(i) Describe the ground states of the model qualitatively in the limits h = 0 (ferromagnetic phase) and
J = 0 (paramagnetic phase). It turns out that there is a phase transition between these phases when
J = h.

(ii) Use the Jordan-Wigner transformation to map the transverse �eld Ising model to a fermion model.
Show that this fermion model has the structure of the Kitaev chain

H = −
∑
j

[
∆(f †j − fj)(f

†
j+1 + fj+1) + µf †j fj

]
(21)

(Convince yourself that the �rst term is actually hermitian.) This fermion model is the drosophila of the
theory of topological superconductors describing a one-dimensional p-wave superconductor. Because it has
so many remarkable properties, there is currently enormous interest in realizing this model experimentally
(and it is quite possible that these experiments were already successful).

(iii) Let us �nally discuss the quantum phases in the language of the fermion model. In the limit of large
µ, we can neglect the coupling ∆ between neighboring sites. In this limit, the model describes a trivial
(band) insulator with all particles stuck on their sites. Now consider the limit in which ∆ dominates over
µ so that we can set µ = 0. In this limit, we can solve the problem by writing fermion operators in terms
of Majorana fermion operators,

fj =
1

2
(γ2j + iγ2j+1). (22)

These Majorana operators are hermitian satisfying γ = γ† (unlike the fermionic operators f and f †).
Explain why one can always �nd such a decomposition. Show that the Majorana operators satisfy the
algebra

{γi, γj} = 2δij . (23)

Show also that for any two Majorana operators γ1 and γ2 and the associated fermion operator f =
(1/2)(γ1 + iγ2), we have the relation f

†f = (1/2)(1 + iγ1γ2) or iγ1γ2 = 2f †f −1. These are basic relations
which are often needed for diagonalizing Majorana Hamiltonians. Finally show that you can diagonalize
the Kitaev chain for µ = 0 by recombining Majorana operators from neighboring sites into new fermion
operators dj . Thus, in the fermionic language, the phase transition of the transverse �eld Ising model
becomes a dimerization transition of these Majorana fermion operators.
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