Problem Set 5

Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, May 18, 2015 before the beginning of the class

In this problem set, we study various examples and aspects of linear response. We first consider a very simple linear response problem for the quantum harmonic oscillator. Then, we prove important general properties of response functions, including the Kramers-Kronig relations which are a direct consequence of causality and the associated analytic properties of the response function in the complex frequency plane. Finally, we consider the polarization operator, a very important response function in the theory of metals. We first compute it for free electrons and subsequently consider interacting electrons in the random-phase approximation.

Problem 1: Polarizability of a harmonic oscillator

In this problem, we consider a very simple example for a response function, namely the polarizability χ of a charge e bound in a harmonic oscillator potential. The polarizability is defined through

$$
\begin{equation*}
d=\chi \mathcal{E}, \tag{1}
\end{equation*}
$$

where d is the dipole moment, $d=e x$, and \mathcal{E} the applied electric field. The Hamiltonian of the system is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} x^{2}-e x \mathcal{E} \tag{2}
\end{equation*}
$$

(a) Use first order perturbation theory in a time-independent electric field \mathcal{E} for the eigenstate $\left|\psi_{n}\right\rangle$ of H to derive the static polarizability χ. Specifically, according to first-order perturbation theory,

$$
\begin{equation*}
\left|\psi_{n}\right\rangle=|n\rangle+\sum_{m \neq n}|m\rangle \frac{\langle m|-e \mathcal{E} x|n\rangle}{E_{n}-E_{m}}, \tag{3}
\end{equation*}
$$

where $|n\rangle$ denotes the eigenstates of the unperturbed harmonic oscillator $(\mathcal{E}=0)$ with eigenenergies $E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right)$. Use this expression to compute the thermal expectation value

$$
\begin{equation*}
d=\sum_{n=0}^{\infty} \frac{e^{-\beta E_{n}}}{Z}\left\langle\psi_{n}\right| e x\left|\psi_{n}\right\rangle \tag{4}
\end{equation*}
$$

to linear order in the applied field \mathcal{E}. (Here, the partition function is $Z=\sum_{n=0}^{\infty} e^{-\beta E_{n}}$.) You may find it useful that x couples only neighboring harmonic oscillator eigenstates with matrix elements (prove!)

$$
\begin{array}{r}
\langle n+1| x|n\rangle=\frac{\ell_{\text {osc }}}{\sqrt{2}} \sqrt{n+1} \\
\langle n-1| x|n\rangle=\frac{\ell_{\text {osc }}}{\sqrt{2}} \sqrt{n} \tag{6}
\end{array}
$$

in terms of the oscillator length $\ell_{\text {osc }}^{2}=\hbar / m \omega_{0}$. Eventually, you can perform the sum over n in the expression for d and find $\chi=\frac{e^{2}}{m \omega_{0}^{2}}$.
(b) Now define a dynamic polarizability as the response to a time-dependent electric field $\mathcal{E}(t)$ through

$$
\begin{equation*}
d(t)=\int_{\infty}^{\infty} d t^{\prime} \chi\left(t, t^{\prime}\right) \mathcal{E}\left(t^{\prime}\right) . \tag{7}
\end{equation*}
$$

Use the general Kubo formula derived in the class to obtain the Kubo formula

$$
\begin{equation*}
\chi\left(t, t^{\prime}\right)=\frac{i e^{2}}{\hbar} \theta\left(t-t^{\prime}\right)\left\langle\left[x(t), x\left(t^{\prime}\right)\right]\right\rangle \tag{8}
\end{equation*}
$$

for the polarizability. Set up and solve the Heisenberg equation of motion for $x(t)$ (for the unperturbed harmonic oscillator!) to find

$$
\begin{equation*}
x(t)=x \cos \omega_{0} t+\frac{p}{m \omega_{0}} \sin \omega_{0} t . \tag{9}
\end{equation*}
$$

Use this to evaluate the correlation function explicitly and find

$$
\begin{equation*}
\chi\left(t, t^{\prime}\right)=\frac{e^{2}}{m \omega_{0}} \theta\left(t-t^{\prime}\right) \sin \left(\omega_{0}\left(t-t^{\prime}\right)\right) . \tag{10}
\end{equation*}
$$

(c) Fourier transform $\chi\left(t, t^{\prime}\right)$ to the time domain and show that

$$
\begin{equation*}
\chi(\omega)=\frac{e^{2} / m}{\omega_{0}^{2}-(\omega+i \eta)^{2}}, \tag{11}
\end{equation*}
$$

where η denotes a positive infinitesimal. Explain how this is related to the result in (a).
(d) Compute the thermal Green's function

$$
\begin{equation*}
\mathcal{G}\left(\tau, \tau^{\prime}\right)=\left\langle\mathcal{T}_{\tau} x(\tau) x\left(\tau^{\prime}\right)\right\rangle, \tag{12}
\end{equation*}
$$

from the path integral for $E=0$, giving explicit results in the (Matsubara) frequency domain. Show that the retarded polarizability can be obtained from $\mathcal{G}(i \Omega)$ by analytical continuation.
(e) Compute the corresponding spectral function $\rho(\omega)$.

Problem 2: General properties of response functions
In this problem we want to discuss some important general properties of response functions $D\left(t, t^{\prime}\right)$ in frequency representation. Consider a retarded Green's functions for bosonic operators, \hat{A} and \hat{B} with Lehmann representation

$$
\begin{equation*}
D(\omega)=\frac{1}{Z} \sum_{m, n}\left(e^{-\beta E_{m}}-e^{-\beta E_{n}}\right) \frac{\langle m| \hat{A}|n\rangle\langle n| \hat{B}|m\rangle}{\omega-\left(E_{n}-E_{m}\right)+i \eta}, \tag{13}
\end{equation*}
$$

and spectral representation

$$
\begin{equation*}
D(\omega)=\int \frac{d \omega}{2 \pi} \frac{\rho\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}+i \eta} \tag{14}
\end{equation*}
$$

in terms of the spectral function

$$
\begin{equation*}
\rho(\omega)=\frac{1}{Z} \sum_{n, m}\left(e^{-\beta E_{m}}-e^{-\beta E_{n}}\right)\langle m| \hat{A}|n\rangle\langle n| \hat{B}|m\rangle 2 \pi \delta\left(E_{n}-E_{m}-\omega\right) . \tag{15}
\end{equation*}
$$

(a) Use the Lehmann representation to show that

$$
\begin{equation*}
\left[D_{A B}(\omega)\right]^{*}=D_{A^{\dagger} B^{\dagger}}(-\omega) \tag{16}
\end{equation*}
$$

Specifically, this implies for hermitian operators \hat{A} and \hat{B} that

$$
\begin{align*}
\operatorname{Re} D(\omega) & =\operatorname{Re} D(-\omega) \tag{17}\\
\operatorname{Im} D(\omega) & =-\operatorname{Im} D(-\omega), \tag{18}
\end{align*}
$$

Figure 1: Integration contour
i.e., $\operatorname{Re} D(\omega)$ is even in $\omega, \operatorname{Im} \mathrm{D}(\omega)$ is odd.
(b) Show that the spectral function is real for the important case $\hat{B}=\hat{A}^{\dagger}$ (with \hat{A} not necessarily a Hermitian operator).
(c) Prove the useful and frequently used identity (for infinitesimal η)

$$
\begin{equation*}
\frac{1}{x+i \eta}=\mathcal{P}\left(\frac{1}{x}\right)-i \pi \delta(x) \tag{19}
\end{equation*}
$$

where \mathcal{P} denotes the principal value and $\delta(x)$ is the Dirac δ-function. [Hint: The principal value can be represented as

$$
\begin{equation*}
\mathcal{P} \int d x \frac{f(x)}{x}=\lim _{\eta \rightarrow 0} \int d x f(x) \frac{x}{x^{2}+\eta^{2}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\eta}{x^{2}+\eta^{2}}=\pi \delta(x) \tag{21}
\end{equation*}
$$

is a representation of the Dirac δ-dunction (why?).]
(d) Use the identity in (c) to show that for $\hat{B}=\hat{A}^{\dagger}$

$$
\begin{equation*}
\operatorname{Im} D(\omega)=-\frac{1}{2} \rho(\omega) \tag{22}
\end{equation*}
$$

and thus

$$
\begin{equation*}
D(\omega)=-\int \frac{d \omega^{\prime}}{\pi} \frac{\operatorname{Im} D(\omega)}{\omega-\omega^{\prime}+i \eta} \tag{23}
\end{equation*}
$$

(e) Finally, we want to discuss a general relation between real and imaginary part of the response function $D(\omega)$ which is a direct consequence of causality, referred to as Kramer-Kronig relation. The Lehmann representation implies that $D(\omega)$ is an analytic function in the upper half of the complex ω-plane. Explain why

$$
\begin{equation*}
\int_{C} \frac{d z}{2 \pi i} \frac{D(z)}{z-\omega+i \eta}=0 \tag{24}
\end{equation*}
$$

with the contour C specified in Fig. 1. Using that the integral over the semicircle vanishes when pushed to infinity, derive the Kramers-Kroning relation

$$
\begin{equation*}
D(\omega)=i \mathcal{P} \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{\pi} \frac{D\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} . \tag{25}
\end{equation*}
$$

Specifically, this relation implies that

$$
\begin{align*}
& \operatorname{Re} D(\omega)=-\mathcal{P} \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{\pi} \frac{\operatorname{Im} D\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} \tag{26}\\
& \operatorname{Im} D(\omega)=\mathcal{P} \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{\pi} \frac{\operatorname{Re} D\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} \tag{27}
\end{align*}
$$

Check that these relations work out for the response function in Eq. (11) above.

Problem 3: Polarization operator

A very important response function describes the density response of a Fermi gas (e.g., non-interacting electrons) with chemical potential μ to an applied electric potential $\phi(\mathbf{r}, t)$,

$$
\begin{equation*}
\delta \rho(\boldsymbol{r}, t)=-e^{2} \int d \mathbf{r}^{\prime} d t^{\prime} \Pi_{0}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right) \phi\left(r^{\prime}, t^{\prime}\right) \tag{28}
\end{equation*}
$$

Since the system is translationally invariant in both space and time, we have

$$
\begin{equation*}
\delta \rho(\mathbf{q}, \omega)=-e^{2} \Pi_{0}(\mathbf{q}, \omega) \phi(\mathbf{q}, \omega) . \tag{29}
\end{equation*}
$$

Π_{0} is often referred to as the polarization operator. It can be computed by applying the Lehmann representation to a single electron system with occupation probability

$$
\begin{equation*}
n_{k}=\frac{1}{e^{\beta\left(\epsilon_{k}-\mu\right)}+1} \tag{30}
\end{equation*}
$$

of the momentum states $|k\rangle$. The charge density is

$$
\begin{equation*}
\hat{\rho}(\mathbf{r})=e \delta(\mathbf{r}-\hat{\mathbf{r}}), \tag{31}
\end{equation*}
$$

and the electric potential couples to the electron through

$$
\begin{equation*}
H_{i n t}=e \phi(\hat{\mathbf{r}})=\int d \mathbf{r} \hat{\rho}(\mathbf{r}) \phi(\mathbf{r}) . \tag{32}
\end{equation*}
$$

Correspondingly, we obtain in Fourier representation $\hat{\rho}(\mathbf{q})=e^{-i \mathbf{q} \cdot \hat{\mathbf{r}}}$ and $H_{\text {int }}=\frac{1}{V} \sum_{q} \hat{\rho}(-\mathbf{q}) \phi(\mathbf{q})$. Using this in the Lehmann representation for the Kubo formula for Π_{0}, we find (with $\epsilon_{k}=\mathbf{k}^{2} / 2 m$)

$$
\begin{equation*}
\Pi_{0}(\mathbf{q}, \omega)=-\frac{1}{e^{2}} \frac{1}{V} \sum_{\mathbf{k} \mathbf{k}^{\prime}}\left(n_{\mathbf{k}}-n_{\mathbf{k}^{\prime}}\right) \frac{\langle\mathbf{k}| \hat{\rho}(\mathbf{q})\left|\mathbf{k}^{\prime}\right\rangle\left\langle\mathbf{k}^{\prime}\right| \hat{\rho}(-\mathbf{q})|\mathbf{k}\rangle}{\omega+\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{k}^{\prime}}+i \eta} \tag{33}
\end{equation*}
$$

Please make sure that you understand the logic leading to this expression.
(a) Evaluate the matrix elements $\langle\mathbf{k}| \hat{\rho}(\mathbf{q})\left|\mathbf{k}^{\prime}\right\rangle$ and show that

$$
\begin{equation*}
\Pi_{0}(\mathbf{q}, \omega)=-\frac{1}{V} \sum_{\mathbf{k}} \frac{n_{\mathbf{k}}-n_{\mathbf{k}+\mathbf{q}}}{\omega+\epsilon_{\mathbf{k}}-\epsilon_{\mathbf{k}^{\prime}+\mathbf{q}}+i \eta} \tag{34}
\end{equation*}
$$

(b) Evaluate both $\operatorname{Re} \Pi_{0}(\mathbf{q}, \omega)$ and $\operatorname{Im} \Pi_{0}(\mathbf{q}, \omega)$ explicitly in 3 d by performing the integration over \mathbf{k} $\left(\frac{1}{V} \sum_{\mathbf{k}} \rightarrow \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\right)$. [Hint: See, e.g. the book by Fetter and Walecka, p158ff, if you need help.]
(c) Imagine now a Fermi system of charged particles, e.g. electrons. Let us also assume that the average electronic charge density is compensated by a uniform and rigid background of opposite charge (representing the ion cores in a solid). Then, the change in the electronic charge density $\delta \rho(\mathbf{r} t)$ is itself producing an induced electric potential, $\phi_{\text {ind }}(\mathbf{r}, t)$,

$$
\begin{equation*}
\phi_{\text {ind }}(\mathbf{r}, t)=\int d \mathbf{r}^{\prime} \frac{\delta \rho\left(\mathbf{r}^{\prime}, t\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{35}
\end{equation*}
$$

The actual induced charge density is thus a response to the total potential

$$
\begin{equation*}
\phi_{\mathrm{tot}}(\mathbf{r}, t)=\phi(\mathbf{r}, t)+\phi_{\mathrm{ind}}(\mathbf{r}, t), \tag{36}
\end{equation*}
$$

which is the sum of the external potential $\phi(\mathbf{r}, t)$ and the induced potential. Thus,

$$
\begin{equation*}
\delta \rho(\mathbf{q}, \omega)=-e^{2} \int d \mathbf{r}^{\prime} d t^{\prime} \Pi_{0}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)\left(\phi\left(\mathbf{r}^{\prime}, t^{\prime}\right)+\phi_{\mathrm{ind}}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right) \tag{37}
\end{equation*}
$$

Note that this is an approximation (called RPA or random phase approximation for historical reasons) in that we neglect the effects of the Coulomb interaction on Π_{0}. Show that this equation can be Fourier transformed to give

$$
\begin{equation*}
\delta \rho(\mathbf{q}, \omega)=-e^{2} \Pi_{0}(\mathbf{q}, \omega)\left(\phi(\mathbf{q}, \omega)+\phi_{\text {ind }}(\mathbf{q}, \omega)\right) \tag{38}
\end{equation*}
$$

Moreover, show that

$$
\begin{equation*}
\phi_{\mathrm{i} n d}(\mathbf{q}, \omega)=\frac{1}{e^{2}} v(\mathbf{q}) \delta \rho(\mathbf{q}, \omega) \tag{39}
\end{equation*}
$$

with $v(\mathbf{q})=\frac{4 \pi e^{2}}{\mathbf{q}^{2}}$. Defining a response function $\Pi(\mathbf{q}, \omega)$ describing the density response of the interacting Fermi system to the externally applied potential $\phi(\mathbf{q}, \omega)$, i.e.,

$$
\begin{equation*}
\delta \rho(\mathbf{q}, \omega)=-e^{2} \Pi(\mathbf{q}, \omega) \phi(\mathbf{q}, \omega) \tag{40}
\end{equation*}
$$

show that

$$
\begin{equation*}
\Pi(\mathbf{q}, \omega)=\frac{\Pi_{0}(\mathbf{q}, \omega)}{1+v(\mathbf{q}) \Pi_{0}(\mathbf{q}, \omega)} \tag{41}
\end{equation*}
$$

Use this to find

$$
\begin{equation*}
\phi_{\mathrm{tot}}(\mathbf{q}, \omega)=\frac{1}{1+v(\mathbf{q}) \Pi_{0}(\mathbf{q}, \omega)} \phi(\mathbf{q}, \omega) \tag{42}
\end{equation*}
$$

Compute the total potential in real space within the Thomas-Fermi approximation $\left(\Pi_{0}(\mathbf{q}, \omega)=\nu_{0}\right.$, where ν_{0} is the density of states at the Fermi energy) for a point charge e inserted into the system, i.e., for

$$
\begin{equation*}
\phi(\mathbf{q}, \omega)=\frac{4 \pi e}{\mathbf{q}^{2}} \tag{43}
\end{equation*}
$$

Explain your result in physical terms (screening).

