
Problem Set 4
Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, May 11, 2015 before the beginning of the class

In this problem set, we continue our study of path integrals and consider path integrals for spin Hamiltoni-
ans. In two additional problems, we learn how to perform Matsubara sums, for both bosonic and fermionic
Matsubara frequencies. These problems introduce a standard technique that one needs regularly.

Problem 1: Path integrals for spin (5+5+5+5+5 points)
In this problem we want to derive a path integral representation for a spin-1

2 Hamiltonian, e.g.,

H = −gσ ·B(t), (1)

where the components σi of σ denote the Pauli matrices. Such path integrals are useful to study the
quantum mechanics of spin models such as the Heisenberg model.
(a) Consider the unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ) in the radial direction in spherical coordi-
nates. Now, consider the spin-up eigenvectors for a Zeeman field along n̂ as defined by the eigenvalue
equation

n̂ · σ|n̂〉 = |n̂〉. (2)

Show that when written in the usual spin basis with the quantization axis along the z axis, this is solved
by the eigenvector

|n̂〉 =

(
e−iφ cos θ2

sin θ
2

)
. (3)

Note also that the eigenvalue equation defines |n̂〉 only up to an overall phase.
(b) Show that the |n̂〉 define an overcomplete set of states, i.e., that

1 =

∫
d2n̂

2π
|n̂〉〈n̂|, (4)

where d2n̂ = sin θ dθ dφ denotes the solid angle corresponding to the unit vector n̂. You can show this
by evaluating the integrals explicitly for the individual matrix elements in the usual spin basis. The set
of states n̂ is overcomplete because is contains more than the minimum number of required basis states
(which would be two for a spin-1

2 problem).
(c) Consider the propagator for H = 0,

iG(n̂t, n̂′t′) = 〈n̂|U(t, t′)|n̂′〉, (5)

with U(t, t′) = 1. Following the derivation of the path integral, insert resolutions of the identity in terms
of the overcomplete sets |n̂(tj)〉 at the N − 1 equally spaced intermediate times t1, . . . , tN−1 (also define
t0 = t′ and tN = t). Show that

iG(n̂t, n̂′t′) =

∫ [
d2n̂(τ)

2π

]
ei

∫ t
t′ dτ i〈n̂(τ)| d

dτ
|n̂(τ)〉. (6)

Give explicit discrete versions of the action and the integration measure of this path integral. Note that
remarkably, the action

S = i

∫ t

t′
dτ 〈n̂(τ)| d

dτ
|n̂(τ)〉 =

∫ t

t′
dτ

1

2
φ̇(1 + cos θ) (7)

1



is non-zero even for a vanishing Hamiltonian! To arrive at this result, you may find the following little
calculation for the overlap of the spin states at two neighboring times useful,

〈n̂(tj)|n̂(tj−1)〉 = 1− 〈n̂(tj)(|n̂(tj)〉 − |n̂(tj−1)〉)
= exp{−〈n̂(tj)(|n̂(tj)〉 − |n̂(tj−1)〉)}. (8)

Explain in which sense the second equality is valid.
(d) Show that the action generalizes to

S =

∫ t

t′
dτ

(
i〈n̂(τ)| d

dτ
|n̂(τ)〉+ gn̂(τ) ·B(τ)

)
(9)

for H = −gσ ·B(τ). To arrive at this result, write the time evolution operator for this Hamiltonian as a
time-ordered exponential (as usual for time-dependent Hamiltonians – see the derivation of linear-response
theory in the lecture). You may want to use the identity (prove!)

〈n̂|σ|n̂〉 = n̂. (10)

(e) Show that Hamilton’s principle for the action (9) correctly reproduces the classical equation of motion
of a spin

˙̂n = 2gn̂×B(t). (11)

Note that this equation of motion is quite different from the usual equations of motion in classical me-
chanics. It is a first-order differential equation in time and the force involves a vector product. (The latter
also appears for particles in a magnetic field whose path-integral description actually has some similarities
with the present problem.)
Remark: To understand the physics of the action for spin more deeply, you may want to learn (or remember)
the concept of a Berry phase in quantum mechanics and recognize that the first term of the action (9) is
just such a Berry phase.

Problem 2: Bosonic Matsubara sums (5+10+5+5 points)
In evaluating the path integral for the harmonic chain, we encountered sums over bosonic Matsubara
frequencies. They emerged because the fields we are integrating over are periodic in imaginary time with
period ~β. It will turn out that this periodicity is a general feature of bosonic fields. In the class, we
treated the two limiting cases of zero temperature (where the summation can be replaced by integration)
and of ~→ 0 (where only one term of the sum survives). In this problem, we want to learn how to perform
such sums in general by converting them into suitable contour integrals.
(a) Consider the Bose function

nB(z) =
1

eβz − 1
(12)

in the complex plane, i.e., z is a complex number. Show that it has poles for

z = i~Ωn =
2πi

β
n (13)

with n an integer and Ωn = (2π/~β)n. Show also that the residues of these poles are all equal to 1/β.
(b) Now consider the important Matsubara sum

I =
1

β

∑
Ωn

e−iΩnτ

i~Ωn − x
(14)
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with τ ∈ [−~β, ~β]. Show that by Cauchy’s theorem, this summation can be converted into the contour
integral

I =

∫
γ

dz

2πi

e−zτ/~

z − x
−1

e−βz − 1
(15)

for τ > 0 and

I =

∫
γ

dz

2πi

e−zτ/~

z − x
1

eβz − 1
(16)

for τ < 0. In both cases, the contour γ in the complex plane is given by

γ

z-plane

(c) Actually, so far both representations work independently of the sign of τ . The sign of τ becomes
important only in the next step in which we deform the contour. Show that for both integrals with the
specified sign of τ , the integrand vanishes exponentially for |z| → ∞. (Remember that |τ | < β.) Thus, we
can add semicircles to the integration contour which go from +i∞ to −i∞ for Rez > 0 and from −i∞ to
+i∞ for Rez < 0. These semicircles do not contribute to the integral. This yields two closed contours,
one for Rez < 0 and another for Rez > 0. Use this to show that

I = −[nB(x) + 1]e−xτ/~ (17)

for τ > 0 and
I = −nB(x)e−xτ/~ (18)

for τ < 0.
(d) Now return to the harmonic chain. As shown in class, the equal-time correlation function

C(R) = 〈[φ(R + r)− φ(r)]2〉 (19)

can be computed from the path integral as

C(R) =
1

V

∑
q

1

~β
∑
Ωn

~ sin2
(
q·R

2

)
ρΩ2

n + ρc2q2
(20)

where Ωn = 2πn/(~β) are the bosonic Matsubara frequencies. We had already computed this correlation
function for all temperatures in a previous problem set (with the final result still written as a sum over
momenta). Now reproduce this result by performing the Matsubara sum with the same technique that we
just introduced. (In this case, the terms of the sum tend to 0 sufficiently fast that analogs of both integral
expressions given above will work fine. Note that the sum in (b) above does not converge for τ = 0.)
An alternative approach would be to note that∑

Ωn

1

Ω2
n + c2q2

= lim
η→0+

∑
Ωn

eiΩnη

Ω2
n + c2q2

= lim
η→0+

∑
Ωn

[
eiΩnη

cq − iΩn
− eiΩnη

cq + iΩn

]
(21)

and then to use the result of (c) above. Here, we introduced a convergence factor eiΩnη into the sum
which is entirely inconsequential as long as we consider the original sum which converges nicely. But it is
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important once we decompose the original expression into its partial fractions. Now, the individual sums
diverge logarithmically without convergence factor. This convergence factor is thus needed to separate the
terms and sum them independently.

Problem 3: Fermionic Matsubara sums (25 points)
As we will see later in the course, fermionic fields ψ(τ) are antiperiodic in imaginary time, i.e.,

f(0) = −f(~β). (22)

Explain that such functions can be written as Fourier series

f(τ) =
∑
εn

f(iεn)e−iεnτ (23)

with fermionic Matsubara freqencies
εn =

π

~β
(2n+ 1). (24)

Now follow the blueprint of the bosonic Matsubara sums (replacing the Bose by the Fermi function) to
perform the fermionic sum

I =
1

β

∑
εn

e−iεnτ

i~εn − x
. (25)
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