
Problem Set 3
Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, May 4, 2015 before the beginning of the class

In this problem set, we fill in some of the missing steps in the quantum mechanics of the harmonic chain.
We also learn how to compute path integrals explicitly. For the most part, the only path integrals that
can be computed exactly are those for a free particle and for the harmonic oscillator, and it is these path
integrals which we want to do. To do this, we exploit that the semiclassical calculation is exact in these
cases.

Problem 1: Quantum mechanics of the harmonic chain (5+5+5+10 points)
Consider the quantized harmonic chain with Hamiltonian

H =

∫
dr

{
1

2ρ
π̂2(r) +

1

2
ρc2(∂xφ̂(r))2

}
(1)

and fundamental commutation relations [π̂(x), φ̂(x′)] = −i~δ(x− x′) and [φ̂(x), φ̂(x′)] = [π̂(x), π̂(x′)] = 0.
In this problem, we will use the operator approach as sketched in the lecture to compute the quantum
expectation value

〈φ̂qφ̂−q〉 (2)

at finite temperature. Remember that the quantum expectation value of an operator Ô at finite temperature
T is given by

〈Ô〉 =
trρÔ

trρ̂
, (3)

where the density operator is ρ = exp(−βH) and β = 1/kBT .
We will also use this problem to perform some of the steps explicitly which were only sketched in the
lecture.
(a) Compute the fundamental commutation relations of the Fourier components of the fields φ̂(x) and
π̂(x),

φ̂(x) =
1

L

∑
q

φ̂qe
iqx

π̂(x) =
1

L

∑
q

π̂qe
iqx,

namely show that
[π̂q, φ̂q′ ] = −i~Lδq,−q′ [φ̂q, φ̂q′ ] = [π̂q, π̂q′ ] = 0. (4)

Express the Hamiltonian in terms of the Fourier components φ̂q and π̂q, i.e., show that

H =
1

L

∑
q

[
1

2ρ
π̂qπ̂−q +

1

2
ρc2q2φ̂qφ̂−q

]
. (5)

(b) Introduce creation and annihilation operators through

âq =

√
ρc|q|
2L~

(φ̂q +
i

ρc|q|
π̂q), (6)
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compute their commutators [âq, â
†
q′ ], [âq, âq′ ], and [â†q, â

†
q′ ], and express the Hamiltonian in terms of these

operators.
(c) Explain how to derive the spectrum and the eigenstates using the creation and annihilation operators.
(d) Now use these results to find the result〈

φ̂qφ̂−q

〉
=

~L
2ρc |q|

coth

(
β~c |q|

2

)
(7)

and check that this reduces to the results derived in the lecture for T � ~c|q| (quantum limit) and
T � ~c |q| (thermal limit).

Problem 2: Path integral for a free particle (10+10+5 points)
Calculate the path integral for a free particle in one dimension, i.e., compute the propagator i G(xt, x′t′)
for H = p2/2m. When written in its discrete form, the path integral for this problem becomes a Gaussian
integral which we can compute explicitly.
(a) We start from the configuration-space path integral and write the path as

x(τ) = xcl(τ) + δx(τ). (8)

Here,

xcl(τ) = x′ +
x− x′

t− t′
(τ − t′) (9)

is the classical path. By Hamilton’s principle, the classical path extremizes the action. Explain why this
implies that

S =

∫ t

t′
dτ

1

2
mẋ2 = Scl +

∫ t

t′
dτ

1

2
mδẋ2 (10)

with the classical action

Scl =
1

2
m

(x− x′)2

t− t′
. (11)

Now, write the path integral in its discrete form and show that

iG(xt, x′t′) =
( m

2πi∆t

)N/2 (2π)(N−1)/2√
det[−iM ]

eiScl , (12)

with ∆t = t−t′
N , Scl = m

2
(x−x′)2

t−t′ , and M the (N − 1)× (N − 1) matrix

M =
m

∆t



2 −1 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1
... 0

. . . . . . . . .
...

. . . −1
−1 2


. (13)

(b) We now need to compute detM . Let us actually consider the slightly more general N × N matrix
with matrix elements

(MN )ij =


2 coshu i = j

−1 i = j ± 1

0 else
. (14)
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First show that detMN satisfies the recursion relation

detMN = 2 coshu detMN−1 − detMN−2 (15)
detM1 = 2 coshu (16)
detM2 = 4 cosh2−1. (17)

Solve this recursion relation with the ansatz detMN = a eNn + b e−Nn, to show that

detMN =
sinh(N + 1)u

sinhu
. (18)

(c) Now use the result of (b) to show that

iG(xt, x′t′) =
( m

2πi∆t

)1/2
eiScl(xt,x

′t′), (19)

which is the final result.
Note that this way of solving the path integral relies on a semiclassical approximation, which turns out
to be exact in this simple problem. In this approximation, one expands the path about the classical path,
x = xcl + δx. Since the action is stationary for the classical path, the expansion of the action in δx has
no linear term. Moreover, we already argued in the lecture that the vicinity of the classical path gives
the dominant contribution. Expanding the action up to the quadratic term in δx, we recover a Gaussian
integral which can be performed. Mathematically, this is known as a stationary phase approximation since
the exponent becomes stationary for the classical path.

Problem 3: Path integral for the harmonic oscillator (25 points)
Use the same approach as in the previous problem to derive the path integral for the harmonic oscillator,

L =
1

2
mẋ2 − 1

2
mω2x2. (20)

You should find the result iG(xt, x′0) = AeiScl , with

A =
( mω

2πi sinωt

)1/2
, and Scl =

mω

2 sinωt

[(
x2 + x′2

)
cosωt− 2xx′

]
. (21)
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