
Problem Set 2
Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, April 27, 2015 before the beginning of the class

In this problem set, we continue our discussion of Gaussian integrals. We compute an integral explicitly
which we encountered and used in the lecture. Here, the main challenge is to compute the inverse of a
large matrix. We also extend our considerations to Gaussian integrals over complex variables. This is
important because many field theories involve complex-valued fields. Finally, we introduce the concept of
generating functionals of moments and cumulants which are widely used in quantum field theory.

Problem 1: A Gaussian integral (10+10 points)
In the course of discussing the thermodynamics of the harmonic chain, we encountered the Gaussian
integral

〈φiφj〉 =

∫
[dφ]φiφj exp

{
−1

2βD
∑N

j=1(φj+1 − φj)2
}

∫
[dφ] exp

{
−1

2βD
∑N

j=1(φj+1 − φj)2
} (1)

where φj denotes the (real) displacement of the jth atom of the chain. In this problem, we want to perform
the explicit calculation which yields the results quoted in the lecture, also in order to learn how to deal
with Gaussian integrals in practice.
(a) Rewrite the exponent in the integrands in matrix notation and show that

βD
N∑
j=1

(φj+1 − φj)2 = φTMφ (2)

where

M = βD



2 −1 0 0 . . . −1
−1 2 −1 0 . . . 0
0 −1 2 −1 0
...

. . . . . . . . .
...

0 0 −1 2 −1
−1 0 . . . 0 −1 2


(3)

(b) Now we know from the general expression for Gaussian integrals that

〈φiφj〉 = [M−1]ij , (4)

so that we need to compute the inverse of the matrix M . This can be done by noting that M describes
a system on a ring which is translationally invariant. Thus, it is natural to suspect that the eigenvectors
φk are plane-wave like, with

[φk]j =
1√
N
eikja. (5)

These eigenvectors are labeled by momentum k. Show that the periodic boundary conditions imply that
k takes on the values k = (2π/a)(n/N) with n ∈ Z and n restricted to the first Brillouin zone. Show that
this corresponds to normalized vectors φ and that these are indeed eigenvectors of M with

Mφ = 4βD sin2
ka

2
φ. (6)
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Thus, we can write the matrix M as

M = 4βD
∑
k

|k〉 sin2 ka
2
〈k|, (7)

where we use bra-ket notation for the eigenvectors for notational simplicity. Finally, explain why this
yields

M−1 =
∑
k

|k〉 1

4βD sin2 ka2
〈k| (8)

and

[M−1]jl =
1

N

∑
k

eika(j−l)

4βD sin2 ka2
. (9)

This gives the result

〈φjφl〉 =
1

N

∑
k

eika(j−l)

4βD sin2 ka2
(10)

which we used in the lecture.

Problem 2: Complex Gaussian integrals (10+5+5+5 points)
In problem set 1, we derived the Gaussian integral∫ N∏

n=1

dφn exp

{
−1

2
φTMφ+ jTφ

}
=

(2π)N/2

(detM)1/2
exp

{
1

2
jTM−1j

}
(11)

for a positive definite, real and symmetric N×N matrix M. In this problem, we want to consider integrals
over complex variables φ = (φ1, . . . , φN ). Here, you should not think of countour integrals in the complex
plane! Instead, these integrals are simply independent integrals over the real and imaginary part of the
φj . One usually writes the integration measure in terms of φj and its complex conjugate φ∗j . This should
be interpreted as

dφjdφ
∗
j = 2dReφj dImφj . (12)

This definition is motivated by formally computing the Jacobian for passing from φj and φ∗j to Reφj and
Imφ∗j as integration variables. Using φj = Reφj + iImφj and φ∗j = Reφj − iImφj , this Jacobian is∣∣∣∣ ∂(φn, φ

∗
n)

∂(Reφn, Imφn)

∣∣∣∣ = 2. (13)

We will also use the shorthand notation [dφ][dφ∗] = dφ1dφ
∗
1 . . . dφNdφ

∗
N for the integration measure.

(a) Now show that the complex Gaussian integral gives∫
[dφ][dφ∗] exp

{
−φ†Mφ+ J†φ+ φ†J

}
=

(2π)N

detM
exp

{
J†M−1J

}
(14)

This is very similar to the result of the Gaussian integral over real variables except that the prefactor on
the right hand side does not involve a square root. This is just a consequence of the fact that we are
integrating over twice as many variables, namely N real and N imaginary parts.
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Finally, we need to comment on the matrix M. Since M enters the integrand as a quadratic form and the
integrand should be real, the matrix M must be Hermitian. Then, M can be diagonalized by a unitary
transformation with all eigenvalues being real. Clearly, these eigenvalues need to be strictly positive for
the integral to be convergent.
(b) We can again define averages over the complex fields φ through

〈. . .〉 =
∫
[dφ][dφ∗] . . . exp

{
−φ†Mφ

}∫
[dφ][dφ∗] exp

{
−φ†Mφ

} . (15)

Use the result of (a) to show that

〈φ∗iφj〉 = [M−1]ij . (16)

What would you get if you were to compute 〈φiφj〉 or 〈φ∗iφ∗j 〉?
(c) Now use the results of (a) and (b) to formulate Wick’s theorem for complex Gaussian integrals, i.e.,
explain how to express any average of the form〈

φ∗i1 . . . φ
∗
inφj1 . . . φjn

〉
(17)

in terms of the 〈φ∗iφj〉. Also explain what happens for averages with different numbers of φj and φ∗j .

Problem 3: Cumulant expansion and generating functionals (10+10+5+5 points)
In this problem, we want to discuss some basics of generating functions for probability distributions and
generalize this concept to field theories. Generating functions are a standard tool in probability theory.
Consider a random variable x with probability distribution P (x) and denote the corresponding averages
by 〈. . .〉. Then, the moment generating function

G(J) = 〈eJf(x)〉 (18)

succinctly summarizes all moments 〈[f(x)]n〉 (n = 0, 1, 2, . . .) of some function f(x). Indeed,

〈[f(x)]n〉 = dn

dJn
G(J)

∣∣∣∣
J=0

(19)

or

G(J) =
∞∑
n=0

Jn

n!
〈[f(x)]n〉. (20)

For the special case of f(x) = x, the moments are just the averages 〈xn〉.
Instead of the moments, it is often useful to characterize the probability distribution through its cumulants.
Examples are the average C1 = 〈f(x)〉, which is the first cumulant, or the variance C2 = 〈[f(x)]2〉−〈f(x)〉2,
which is the second cumulant. It turns out that the entire series of cumulants Cn is generated by the
cumulant generating functional

W(J) = lnG(J) = ln〈eJf(x)〉 (21)

through

Cn =
dn

dJn
W(J)

∣∣∣∣
J=0

(22)
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and

W(J) =

∞∑
n=1

Jn

n!
Cn. (23)

(a) Give explicit expressions for the first four cumulants C1, C2, C3, C4 in terms of the moments of f(x).
The third cumulant is known as skewness, the fourth as kurtosis.
(b) Compute all cumulants of x for a Gauss distribution

P (x) =
1√
2πσ

e−
x2

2σ . (24)

and all cumulants of n (n = 1, 2, 3, . . .) for the Poisson distribution

P (n) = 1
n! e
−λ λn, (25)

where n = 0, 1, 2, .... You should do this by explicitly computing the cumulant generating functions for
these distributions.
(c) Now consider a multivariate complex Gaussian distribution as introduced above in problem 2,

P [φ] =
exp

{
−φ†Mφ

}∫
[dφ][dφ∗] exp

{
−φ†Mφ

} (26)

and introduce the moment generating functional

G[J] = 〈exp{J†φ+ φ†J}〉 (27)

as well as the cumulant generating functional

W[J] = ln〈exp{J†φ+ φ†J}〉. (28)

Compute both of these generating functions explicitly (i.e., perform the average). Use this to compute
the second moment 〈φ∗iφj〉 and the second cumulant 〈φ∗iφj〉 − 〈φ∗i 〉〈φj〉.
(d) Now consider the slightly modified multivariate complex Gaussian distribution,

P [φ] =
exp

{
−(φ− φ0)

†M(φ− φ0)
}∫

[dφ][dφ∗] exp {−(φ− φ0)
†M(φ− φ0)}

(29)

with some fixed φ0. Compute the generating functions as defined in (c). Use your result to obtain the
first and second moments and cumulants. (The first average and cumulant are just the average 〈φi〉).
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