
Problem Set 13

Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Problem set as preparation for class exam

This problem set discusses some aspects of R. Shankar, Renormalization group approach to interacting

fermions, Rev. Mod. Phys. 66, 129 (1994). We will focus in particular on Sec. IV. All problems should be

solved for zero temperature.

Problem 1: Polarization operator of (non-interacting) 1d electron systems

Consider a one-dimensional system of electrons with Hamiltonian

H =

∫
dxψ†(x)

(
−∇

2

2m

)
ψ(x). (1)

We want to study the density response of the system to external perturbations.

(a) Use linear-response theory and exploit the relations between the various correlation functions to com-

pute its polarization operator de�ned through

δn(x, t) = −
∫

dx′dt′Π(x, t;x′, t′)eφ(x′, t′) (2)

in momentum and frequency representation. Here, δn(x, t) is the change in density relative to the ground

state and φ(x, t) is an applied scalar potential. You should �nd

Π(q, ω) =
m

2πq

{
ln
ω + iη + q2/2m+ qkF /m

ω + iη − q2/2m+ qkF /m
− ln

ω + iη + q2/2m− qkF /m
ω + iη − q2/2m− qkF /m

}
. (3)

(b) Specify to the static limit and consider what happens to it in the limits of q → 0 and q → 2kF .
Show that the polarization operator becomes equal to the density of states in the former case and diverges

logarithmically at 2kF .

The latter divergence suggests that a one-dimensional interacting system might want to spontaneously

form density modulations with wave vector 2kF . Such a state with spontaneous density modulations is

known as a charge density wave.

Problem 2: Mean-�eld approach to 1d charge density waves

We have already seen in a previous problem set that the Jordan-Wigner transformation maps the XXZ

chain to a spinless fermion system with nearest-neighbor interactions at half �lling. We will now study

this interacting fermion problem in more detail. Speci�cally, we will be interested in whether this system

exhibits charge density wave order. The Hamiltonian is

H =
∑
j

{
−t[ψ†j+1ψj + ψ†jψj+1] + U0(nj −

1

2
)(nj+1 −

1

2
)

}
. (4)

Here, nj = ψ†jψj is the occupation number of site j and the interaction U0 > 0 is assumed to be repulsive.

We will also assume a vanishing chemical potential, µ = 0, which puts the system at half �lling.

(a) Brie�y describe the ground states in the limits of vanishing and in�nitely strong repulsive interaction.

(b) Consider the mean-�eld theory for a charge-density wave. Make the ansatz

nj = 〈nj〉+ (nj − 〈nj〉) (5)
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with the average

〈nj〉 =
1

2
+

1

2
(−1)j∆. (6)

and neglect terms in the Hamiltonian which are quadratic in the �uctuations about the average. Show

explicitly that this leads to the gap equation

∆ =

∫ π/2

−π/2

dk

2π

2U0∆√
4t2 cos2 k + ∆2U2

0

. (7)

(b) Obtain the nontrivial solution of the gap equation explicitly by linearizing the spectrum in the vicinity

of the Fermi points.

(c) What kind of order would the charge density wave correspond to in the XXZ model?

Problem 3: Renormalization group treatment

In the previous problem, we found that in mean-�eld theory the interacting fermion chain exhibits charge

density wave order at arbitrarily weak interactions. We will now address this problem by means of a

simple RG treatment at weak interactions. We will make several approximations to simplify the problem.

Justi�cations and further discussions for all these approximations can be found in the paper mentioned

above.

(a) Rewrite the nearest neighbor interaction

HI = U0

∑
j

ψ†j+1ψ
†
jψjψj+1 (8)

in momentum space and show that after antisymmetrization, this yields

HI = −U0

∫
dk1
2π

dk2
2π

dk3
2π

dk4
2π

2πδ(k1 + k2 − k3 − k4) sin
k1 − k2

2
sin

k3 − k4
2

c†k4c
†
k3
ck2ck1 . (9)

Here, we already used that umklapp processes in which momentum is conserved only modulo reciprocal

lattice vectors can be neglected.

(b) Now explain why at low energies, we can decompose the Fermi �eld into right- and left movers, de�ned

through

Lk = ck−π/2 Rk = ck+π/2, (10)

where k is measured from the Fermi points and is assumed small compared to π. Use this decomposition,

exploit momentum conservation, and drop all terms which involve derivatives of the �elds (i.e., factors of

the k's measured from the Fermi points) to obtain the simpli�ed interaction

HI = U0

∫
dk1
2π

dk2
2π

dk3
2π

dk4
2π

2πδ(k1 + k2 − k3 − k4)

×
{
R†k4L

†
k3
Lk2Rk1 + L†k4R

†
k3
Rk2Lk1 −R

†
k4
L†k3Rk2Lk1 − L

†
k4
R†k3Lk2Rk1

}
. (11)

Each term can be represented by an interaction vertex as discussed in the lecture, see Fig. 1(a) for the

second term as an example. Explain how this representatin is related to that used in Shankar's paper.

(c) Now consider an momentum-space RG procedure in which we integrate out a slice of momentum space

and track the change in the coupling constant. (We will not consider the rescaling step of the RG procedure

here.) Renrmalizations of the interaction constant begin in second order in the interaction. Using the

representation given above, draw all diagrams to this order which renormalize the second term in Eq. (11).

An example term is shown in Fig. 1(b). Show explicitly that the sum of these diagrams vanishes. Note

that in evaluating these diagrams, you are allowed to put all external lines right at the relevant Fermi
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Figure 1: Diagrammatic representation of (a) the e�ective interaction and (b) a representative contribution

to the interaction renormalization to second order in the coupling.

point, i.e., there are no external momenta or energies to consider as we neglect the momentum (as well

as frequency) dependence of the interaction. Note also that you neither need the true prefactor of the

diagram nor a complete evaluation of the integrals.

The last result shows that the free Hamiltonian is actually not unstable against charge-density wave forma-

tion. The cancellation is actually between diagams describing charge-density wave and superconducting

instabilities. Mean-�eld theory retains only one of them and thus predicts an instability.
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