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Abstract Experimental studies of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl

(Tempol) in 60 wt% aqueous glycerol were carried out for temperatures from 273 to

340 K. Selective isotope substitution allowed comparisons between the experi-

mental spectral manifestations of spin exchange and dipole–dipole interactions for

protonated, deuterated, 15N, and 14N Tempol. Theoretical spectra were computed

from a rigorous theory specifically formulated to include proton hyperfine inter-

actions over a wide range of spin exchange and dipole–dipole interactions to

compare with the experimental data. For spin exchange and dipole–dipole inter-

actions small compared with the proton hyperfine coupling constant, spectra were

calculated with perturbation theory to gain insight into the behavior of individual

proton lines. The theoretical and experimental spectra were analyzed by least-

squares fitting to Voigt shapes or by a new two-point method. For most accessible

experimental designs, the comparisons are rather good; however, for an experiment

constrained to low concentrations and high viscosities, the methods are less

accurate.
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1 Introduction

Electron paramagnetic resonance (EPR) of free radicals in solution often show

resolved hyperfine structure (hfs) due to the coupling of the unpaired electron with

magnetic nuclei in the same molecule. See Table 1 for a list of definitions,

abbreviations and acronyms. In 1959, a remarkable temperature dependence of this

resolution, which appeared and then disappeared upon raising the temperature, [1]

led Pake and Tuttle [2] to suggest that Heisenberg spin exchange (HSE) was

responsible for the high-temperature behavior. One year later, Kivelson [3] cited

Pake and Tuttle’s ‘‘ingenious explanation of the phenomenon’’ as his reason to

‘‘develop the exchange effects between free radicals in liquids in somewhat more

detail.’’ His theory was able to predict the effects of HSE in two limits: (1) slow

HSE, when the spin exchange frequency, xex, is much less than the hyperfine

spacing or (2) fast HSE, in the other extreme. For slow HSE, the hyperfine lines

Table 1 Definitions, abbreviations and acronyms

hfs Hyperfine structure

HSE, DD Heisenberg spin exchange and dipole–dipole interactions, respectively

IHB Inhomogeneous broadening of the nitrogen hyperfine lines, principally due

to hfs for protons or deuterons, but also due to magnetic field modulation

Manifold Superposition of proton or deuteron spin modes corresponding to each

nitrogen nuclear quantum number

C ! 0 Indicates absence of HSE or DD

Dark zone The region of HSE or DD where the hfs disappears; i.e., where VC �
hyperfine spacing. For nitroxides, there are two such zones with VC � a,

the proton dark zone, and VC � A0 the nitrogen dark zone

Absorption The component of an absorption spectrum with a first-derivative shape

given by Eq. (11)

Dispersion The component of an absorption spectrum with a first-derivative shape

induced by HSE and/or DD that has the mathematical form of a

dispersion given by Eq. (12). This signal is distinguished from the in-

phase signal due to a slight mismatch of the microwave cavity by calling

the latter the instrumental dispersion

Voigt(s), Lorentzian(s),

Gaussian(s)

First-derivative Voigt, Lorentzian, or Gaussian line shape functions,

respectively, used as adjectives to modify dispersion or absorption. For

example, we refer to a Voigt dispersion or a Lorentzian absorption, etc.

DHGðVoigtÞ
ppM , DHLðVoigtÞ

ppM The Gaussian and Lorentzian components of a Voigt manifold

Fit Verb, performing a least-square fit. Noun, the result of the fit

HVL, LVL The high- or low- viscosity limit of the spectral densities of the correlation

functions for DD, respectively

Nitroxide Nitroxide free radicals

Partially resolved spectrum A spectrum such as that in Fig. 8b. A subjective term, quantified by the

Voigt parameter. See text

Spectrum showing incipient

resolution

A spectrum such as that in Fig. 8c. A subjective term, quantified by the

Voigt parameter. See text
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broaden and shift toward one another, the less intense lines broadening the most. For

fast HSE, the hyperfine pattern merges into one line and narrows. The intermediate

region, where xex is comparable to the spacing was not accessible. We call this

intermediate region the ‘‘dark region.’’ We write xex ¼ KexC, where Kex is the rate

constant for HSE and C is the radical concentration in units mol/L.

Two years after Kivelson’s work, Currin [4] developed a rigorous theory

describing the effects of HSE in a single equation that was valid over the entire

range of KexC from good resolution to extreme narrowing. He reproduced

Kivelson’s results for slow and fast HSE, and could predict the resulting spectra in

the dark region, but not an account of what happened to the hyperfine lines that had

merged into a single line and had collapsed into a single narrow line. In modern

times, we refer to these ‘‘lines’’ as spin modes recognizing that each mode is a

collective state not representing a particular spin [5].

Over the next few years after Currin’s paper, there was intense activity by some

of the best minds in EPR as summarized in Ref. [6] culminating in a monograph in

English in 1980 [7] dedicated entirely to HSE. Studying HSE by EPR is a powerful

method to study bi-molecular encounters and re-encounters. Its power derives from

the fact that the interaction is very short range, occurring only during the short time

in which the overlap of unpaired spin orbitals between the two colliding radicals is

significant.

A very large set of combinations of various types of paramagnetic particles were

utilized in experiments which are summarized in the monograph; [7] here, we

restrict our attention to nitroxide free radicals (nitroxides) in dilute solution focusing

on methods to analyze the spectra. For the wealth of uses of HSE between nitroxides

to study many problems in physics, chemistry, and biology, consult the monograph

[7], an excellent entry into the literature. Later, information is available in the series

of monographs edited by Berliner [8–10] and references therein which include

monographs and textbooks. Updates to 2009 may be found in Refs. [6, 11] and

references therein.

It has been appreciated for many years that to study bimolecular collisions of

nitroxide free radicals in solution using HSE, the effects of dipole–dipole

interactions (DD) must be taken into account. Early efforts to separate HSE and

DD employed a hydrodynamic model to model the temperature dependence of the

line widths; however, these were not very successful [12]. In fact, Berner and

Kivelson [12] showed that those methods were unlikely to successfully effect the

separation because the line width did not show a hydrodynamic behavior.

An important development ensued in 1976 when one of the authors (Salikhov) of

the monograph [7] derived for each spin mode, in the slow-HSE limit, expressions

of the form of a Lorentzian absorption plus an additional term antisymmetric in the

non-derivative presentation of the spectrum. This additional term was not employed

in analyzing experimental spectra until 21 years later when Bales and Peric [6]

recognized that it had the mathematical form of a dispersion signal, and coined the

term spin-exchange-induced dispersion [6]. These authors rewrote Salikov’s

expressions in a form applicable to experimental spectra and incorporated them

into a fitting routine to separately determine the absorptions and dispersions and

showed that values of Kex could be determined from the dispersions with a precision
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that rivaled those found from the line width. In that work [6], Fremy’s salt was

studied at high temperature; thus, DD did not complicate the analysis.

An interesting historical fact seems to have escaped attention. Currin [4] found

the dispersion term in the slow-HSE limit; however, because the focus at the time

and for many years afterward was on the line width, he dismissed it saying ‘‘The

second term leads to an antisymmetric contribution of order KexC to each hyperfine

component and will be of no further interest to us’’ [4]. Ironically, in recent work

[5, 13] and in this paper, we find that the dispersion component plays a dominate

role in the dark zones and is like a mean mother, indispensable but difficult.

Bales et al. [11], fitting experimental spectra with an absorption/dispersion line

shape supposing that HSE introduced the dispersion and DD did not, could separate

HSE and DD at a single temperature leading to results that were reasonable: HSE

increased with T=g, where T is the temperature and g the shear viscosity of the

solution, while DD decreased. Nevertheless, there was an unexplained negative

dispersion signal at low values of T=g [11]. This led Salikhov to report in 2010 [14]

that work in 1976 [15] (see Ch. 4, Sect. 1, Eqs. (4.20, 4.21) had already predicted

that DD produces a dispersion term, but with a sign opposite to that for HSE. This

fact had escaped the attention of workers in the field. It had also been overlooked in

previous theories (see, e.g., [16], Ch. VIII). The peculiar opposite signs result from

the fact that the quantum coherence has a 180� phase shift when it is transferred

from one paramagnetic particle to another by DD while there is no shift for HSE.

The 2010 paper [14] worked out explicitly the expressions to describe the

manifestations of HSE and DD for nitroxides that showed significant hyperfine

coupling to no nuclei other than nitrogen. However, there are no such nitroxides

except for Fremy’s salt. Thus, inhomogeneous broadening (IHB) by protons or

deuterons, must be taken into account for accurate work. Last year, Salikhov et al.

[17] extended the work to nitroxides with a formulation that takes into account

patterns of hfs due to other nuclei.

Employing a more complete theory of HSE and DD wherein negative dispersions

occurred naturally, 14N nitroxide data considered in 2009 were reanalyzed in 2014

[18]. Furthermore, in the same paper [18], similar studies of 15N were used to

compare the results of the two isotopes and to introduce a new approach to separate

HSE and DD: the relative broadening constant method (RBCM). The three methods,

using the dispersion component of the two isotopes and the RBCM were in general

agreement, although there were systematic differences, seemingly outside of

experimental uncertainty. The nitroxides employed in 2014 were per-deuterated,

mitigating but not eliminating the need to consider the effect of the deuteron hfs.

Actually, 14N nitroxide spectra undergoing HSE were analyzed [19] 33 years ago

by showing that the line shape was adequately described by a Voigt and assuming

that the broadening of the Lorentzian component was equal to 4KexC=3
ffiffiffi

3
p

c. The

problem of the asymmetric low- and high-field lines, now known to be due to an

admixture of dispersion and absorption components, was avoided by working with

the central line of 14N nitroxide. Last year’s paper called into question using a Voigt

approximation for interacting spins [17] and developed approximate methods to

analyze the data avoiding that assumption. Here, we investigate carefully the

legitimacy of the 1984 approach presented as assumption 1 below [19].
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Unlike our posture in the past to view IHB as a problem to be overcome, we now

view the proton structure as a resource allowing us a thus far limited view into the

proton dark zone. This view can only be as accurate as our ability to find correct

Lorentzian line widths and to find separate absorption and dispersion components in

the IHB spectra.

The purpose of the present paper is to test the methods used previously [18] by

comparing the results from 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-15N-oxyl (15

NH), 4-hydroxy-2,2,6,6-tetramethylpiperidine-d17-1-15N-oxyl (15 ND), and 4-hy-

droxy-2,2,6,6-tetramethylpiperidine 1-oxyl (14 NH). In addition, a new method that

does not require non-linear least-squares fitting to separate HSE and DD is applied

to experimental data and compared with the fitting methods. The new method

[14, 17] requires measurement of two points on each line and is referred to as the

‘‘two-point method.’’ The study of this hydrogen bonding spin probe offers a

complement to earlier studies [18] of a similar probe with less hydrogen bonding

capacity in a similar solvent.

2 Theory

2.1 General Formulation of the Spectral Manifestations of HSE and DD
Interactions

Equations (8) and (9) of SBG (2016) give the spectrum of a radical undergoing HSE

and/or DD with any set of hyperfine interactions. The equations are rigorous within

the restrictions detailed on p. 1101 of Ref. [17] which are likely to be valid for

viscosities that may be studied by these methods. Equation (8), while being general

and rigorous, is not easily discussed for a general case; thus, instead of reproducing

it as derived, we specialize it to nitroxides that are IHB by hyperfine interactions

with protons. The hyperfine interactions naturally separate into those for nitrogen

and much smaller interactions with protons. To simplify further, we consider

N equivalent protons. This applies directly to radicals such as di-tert-butylnitroxide

and 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl and is a good approximation for

most nitroxides when the Voigt parameter, vM \ 2, Eq. (8) below, because all

proton patterns yield the same results to the precision detailed in [20]. The

advantage of these restrictions is that a concrete, clearer exposition may be

presented, maintaining the essential physical content. The spectrum is proportional

to the first-derivative of the real part of the following:

YðHÞ ¼ � GðHÞ
1 þ GðHÞðKex þ ð2I þ 1ÞVddÞC

; ð1Þ

where

GðHÞ ¼
X

mM

qmM
�T�1

2M � icðH0mM �MA0 � ðm� N=2Þa� HÞ � CðKex þWdd þ VddÞ
;

ð2Þ
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where H0mM is the resonance field of the mMth proton line and H is the swept

magnetic field. H0mM ¼ H0 �MA0 � ma, where H0 is the resonance field of the

spectrum. The sum over m extends over all of the proton lines, m = 0–N, numbered

from low- to high-field in each manifold, I is the nuclear spin of the nitrogen and A0

and a the nitrogen and proton hyperfine coupling constants for C ! 0, respectively.

The sum over M, the nitrogen nuclear quantum number, is over the manifolds - 1/2

and ? 1/2 for 15N and ? 1, 0, and - 1 for 14N. Furthermore, Eq. (2) assumes that,

within a given manifold, the Lorentzian line width DHL
ppMð0Þ ¼ 2T�1

2M=ðc
ffiffiffi

3
p

Þ due to

relaxation mechanisms other than HSE or DD is the same, independent of m. The

statistical weight, qmM is given by:

qmM ¼ 1

2I þ 1
qm; ð3Þ

where qm is the statistical weight of each proton hyperfine line within a manifold,

normalized to unity. For N equivalent protons, qm is given by the following:

qm ¼ 1

2N

N!

ðN � mÞ!m! : ð4Þ

A term describing extra line shifts for HSE due to repeated collisions while the

two nitroxides are within a cage [21], has been omitted. To simplify the notation, we

denote the low-, central-, and high-field values of M by lf, cf, and hf for 14N and lf

and hf for 15N.

The DD rate constants, Eqs. (5) and (6) of Ref. [18] derived from equations on

pp. 239–240 of Ref. [14] are as follows:

Wdd ¼ j2 3

8
Jð2Þð2x0Þ þ

18I þ 15

4ð2I þ 1Þ J
ð1Þðx0Þ þ

10I þ 9

24ð2I þ 1Þ J
ð0Þð0Þ

� �

NAð10�3Þ; ð5Þ

Vdd ¼ � 1

2I þ 1
j2 3

2
Jð1Þðx0Þ þ

1

6
Jð0Þð0Þ

� �

NAð10�3Þ; ð6Þ

where x0 ¼ cH0 and the microwave frequency, x ¼ cH. j2 ¼ 3c4h2=4 for electron

spins, where c is the gyromagnetic ratio of the electron, JðnÞðxÞ are the spectral

densities of the correlation functions for DD, and NA is Avogadro’s number [18].

Spectral densities are usually given in concentration units cm-3 [16] and the factor

NAð10�3Þ changes the units to molarity [18].

The rate constants in Eqs. (5) and (6) were calculated in Ref. [14] for nitroxides

without protons. The appropriate expressions to calculate DD line widths are

developed below. These rate constants may be simplified in two limits: the high-

viscosity limit (HVL) where Jð2Þð2x0Þ = 0 and Jð1Þðx0Þ = 0 or in the low-viscosity

limit (LVL), where Jð2Þð2x0Þ: Jð1Þðx0Þ: Jð0Þð0Þ = 4:1:6. See after Eq. (VIII. 79) of

Ref. [16]. Although there is a difference in the HVL and the LVL in principle, in

practice, the difference in the parameter that separates HSE and DD broadening is

within experimental error. See Fig. 5 of Ref. [18]. Thus, we present the HVL in this

paper. See the Supplemental Information of Ref. [18] for the expressions in the

LVL. In the HVL,
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Vdd

Wdd

¼ �4

10I þ 9
: ð7Þ

For C ! 0, Eq. (1) yields IHB absorption manifolds that were treated

exhaustively in [20] by exploiting the fact that the profiles of complicated hyperfine

coupling patterns are nearly Gaussian, therefore, the Voigt line shape accurately

models those nitroxides. The Voigt line shape is determined uniquely by the Voigt

parameter

vM ¼ DHGðVoigtÞ
ppM =DHLðVoigtÞ

ppM ; ð8Þ

where for any set of hyperfine coupling constants, aj with nuclear spin Ij

DHGðVoigtÞ
ppM ¼ 2 a

X

IjðIj þ 1Þa2
j =3

h i1=2

;

where a is a parameter near unity that adjusts the half-height of the pattern to that of

the Gaussian, pp. 92–93 of [20]. In the case of nitroxides, considering protons and

deuterons, the Voigt approximation is excellent for all of the known proton patterns

and for many other fictitious patterns except when aj for a single proton is much

larger than any of the others [20]. For equivalent protons,

DHGðVoigtÞ
ppM ¼ a

ffiffiffiffiffiffi

aN
p

; ð9Þ

with a = 1.08 for N = 12.

2.2 Perturbation Theory of HSE and DD

Let us introduce the parameter that characterizes the rate of coherence transfer

V ¼ Vdd þ Vex; ð10Þ

where Vex ¼ Kex=ð2I þ 1Þ and Vdd is given by Eq. (6). Thus, the ‘‘rate’’ constant of

spin coherence transfer is given by Kct ¼ ð2I þ 1ÞV .

The spectrum may be represented by the following for any value of V including

extreme narrowing of the entire spectrum as follows:

Y 0 ¼
X

m;M

VppmML
0abs
mM þ VdispmML

0disp
mM

h i

; ð11Þ

where

L0abs
mM ¼ �8nmM

ð3 þ n2
mMÞ

2
; ð12Þ

and

L
0disp
mM ¼ 3ð3 � n2

mMÞ
ð3 þ n2

mMÞ
2
: ð13Þ
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L0abs
mM is the component with a Lorentzian absorption shape of unit peak-to-peak

height and L
0disp
mM is the component with a Lorentzian dispersion shape of unit

maximum intensity, with

nmM ¼ 2
H � HmM

DHL
ppM

; ð14Þ

where the line widths, DHL
ppM , are treated in Eqs. (35) and (41) below. The inte-

grated intensity of each proton line is

ImM ¼ p
ffiffiffi

3
p VppmMðDHL

ppmMÞ
2: ð15Þ

For C ! 0

ImM ¼ p
ffiffiffi

3
p VppmMð0ÞðDHL

ppmMð0ÞÞ
2:

Thus, within each manifold

VppmM ¼ VppmMð0Þ
DHL

ppmMð0Þ
DHL

ppmM

 !2

; ð16Þ

where VppmMð0Þ / qmM . The constant of proportionality does not matter in our

computations; however, if we wish to display a spectrum with several manifolds,

then we must scale manifold M0 to manifold M as follows:

VppmMð0Þ ¼ VppmM0 ð0Þ
DHL

ppmMð0Þ
DHL

ppmM0 ð0Þ

 !2

: ð17Þ

The coefficients VppmM and VdispmM are very complicated functions of VC even

for two or three lines [5] in the absence of proton lines; however, for VC � ca,

perturbation theory is applicable. See Eq. (2.81), p. 47 above Eq. (2.86), the

equations immediately preceding Eq. (2.86) of [7], or the equivalent Eqs. (5)–(20)

of Ref. [6] where they are presented in terms of measured quantities.

The resonance field of the mMth line is given by

HmM ¼ HmMð0Þ þ dHmM; ð18Þ

where the line shifts due to HSE are given by Eq. (22) of Ref. [6]; see also Ref. [7].

When generalized to HSE and DD we have

dHmM ¼ �qmM
ð2I þ 1ÞVC

c

� �2
X

m0M0 6¼mM

qm0M0

Hð0ÞmM � Hð0Þm0M0
; ð19Þ

where the sum is carried out over all hyperfine lines except the one labeled by mM.

We see that line shifts are independent of the sign of V .

The relative intensity of the induced dispersion component is given by the

following [6, 7]:
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VdispmM

VppmM

¼ � 8
ffiffiffi

3
p

9

ð2I þ 1ÞVC
c

X

m0M0 6¼mM

qm0M0

Hð0ÞmM � Hð0Þm0M0
: ð20Þ

Denote the sum in Eqs. (19) and (20) as follows:

RmM �
X

m0M0 6¼mM

qm0M0

Hð0ÞmM � Hð0Þm0M0
: ð21Þ

For nitroxides, RmM divides naturally into interactions between members of

different manifolds (inter-manifold) and those within the same manifold (intra-

manifold).

2.2.1 Inter-Manifold

To be concrete, let us begin by considering 15N and selecting line m from the lf-

manifold. From Eq. (3), qm0M0 ¼ qm0= 2I þ 1ð Þ. The denominator of Eq. (21) is the

separation between the line m in the lf-manifold and the line m0 in the hf-manifold

which is given by

Hð0Þmlf � Hð0Þm0
hf ¼ �A0 � a � ðm0 � mÞ ð22Þ

Expanding in the small parameter a=A0

Rinter
mlf ¼ �1

ð2I þ 1ÞA0

X

m0
qm0 1 � a

A0

� ðm0 � mÞ
� �

; ð23Þ

so

Rinter
mlf ¼ �1

2A0

1 þ a

A0

½m� m
0 �

� �

ð24Þ

because
P

qm0 ¼ 1 where the first moment of m0, m
0 �
P

m
0
qm0 .

For 14N, the calculation is similar except that ð2I þ 1Þ ¼ 3 and the sum over the

cf- and hf-manifolds involves one at spacing A0 and another at 2A0 yielding

Rinter
mlf ¼ �1

2A0

1 þ 5a

6A0

½m� m
0 �

� �

: ð25Þ

Equations (24) and (25) may be written for either isotope as follows:

Rinter
mlf ¼ �1

2A0

1 þ ð4I þ 1Þ
6I

a

A0

½m� m
0 �

� �

: ð26Þ

The mean value of Rinter
mlf over the low-field manifold is given by

Rinter
lf ¼ �1

2A0

1 þ ð4I þ 1Þ
6I

a

A0

½m� m
0 �

� �

¼ �1

2A0

: ð27Þ

For the hf-manifold, the sign of Eq. (26) is the opposite so Rinter
hf ¼ �Rinter

lf and

for the center-field line of 14N, Rinter
cf = 0.
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2.2.2 Intra-Manifold

For line m of any manifold, we have from Eq. (21)

Rintra
mlf ¼ 1

ð2I þ 1Þa
X

m0 6¼m

qm0

ðm0 � mÞ: ð28Þ

The average of Rintra
mlf is zero, by symmetry and is difficult to compute for a

general proton hyperfine pattern; however, for equivalent protons the sum may be

calculated easily. For example, for N = 12, the results are given in column 2 of

Tables 2 and 3. The other entries in Table 2 are sample calculations for the lf -

manifold of Fig. 1 while Table 3 gives the results for the hf -manifold.

2.2.3 Dispersion Height

For line m of the lf-manifold, Eq. 20,

VdispmM

VppmM

¼
V inter

dispmM

V inter
ppmM

þ
V intra

dispmM

V intra
ppmM

¼ � 8
ffiffiffi

3
p

9

ð2I þ 1ÞVC
c

�1

2A0

1 þ ð4I þ 1Þ
6I

a

A0

½m� m
0 �

� �

þ 1

2I þ 1ð Þa
X

m0 6¼m

qm0

ðm0 � mÞ

" #

:

ð29Þ

Table 2 The intra-manifold sum in Eq. (28) and sample calculations for the HSE 15N spectrum of Fig. 1

lf-manifold

lf proton line m
P

m0 6¼m

qm0
ðm0�mÞ dHintra

mM , mG, Eq. (31) Bm, G, Eq. (35) V inter
dispmM=V

inter
ppmM V intra

dispmM=V
intra
ppmM

0 - 0.186 0.0327 0.277 0.00748 0.0859

1 - 0.235 0.495 0.277 0.00764 0.108

2 - 0.301 3.49 0.275 0.00779 0.139

3 - 0.359 13.9 0.270 0.00794 0.166

4 - 0.352 30.6 0.260 0.00809 0.163

5 - 0.226 31.4 0.250 0.00825 0.104

6 0.00 0.00 0.246 0.00840 0.00

7 0.226 - 31.4 0.250 0.00855 - 0.104

8 0.352 - 30.6 0.260 0.00871 - 0.163

9 0.359 - 13.9 0.270 0.00886 - 0.166

10 0.301 - 3.49 0.275 0.00901 - 0.139

11 0.235 - 0.495 0.277 0.00916 - 0.108

12 0.186 - 0.0327 0.277 0.00932 - 0.0859

Average 0 0.266 0.0084 0

Parameters: A0 = 22 G, a = 0.4 G, KexC=c = 0.24 G, DHL
pplfð0Þ = 0.45 G, and DHL

pphfð0Þ = 0.69 G.

Line shifts due to inter-manifold interactions, leading term of Eq. (31), are less than 0.1 mG
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Averaging over the lf-manifold Rintra
mlf = 0, so the average is only due to the inter-

manifold interactions as follows:

Vdisplf

Vpplf

¼ 4

3
ffiffiffi

3
p ð2I þ 1ÞVC

cA0

: ð30Þ

For the hf-manifold, the sign of Eq. (30) is the opposite and for 14N, the result is

the same. Equation (30) is the same as the result as for ð2I þ 1ÞVC � ca [18] as

long as ð2I þ 1ÞVC � cA0. Above this limit, entering into the nitrogen dark zone,

Vdisplf=Vpplf is no longer linear in VC; however, it is easily interpolated all the way

up to spectrum narrowing using Tables 3 and 5 of Ref. [13] or the expressions in

Ref. [5]. In this paper, these corrections are negligible except at 340 K; there, we

make the appropriate corrections.

2.2.4 Line Shifts

From Eq. (19) the shift of line m in the low-field manifold is given by

dHmlf ¼ dHinter
mM þ dHintra

mM ¼ �qmM
ð2I þ 1ÞVC

c

� �2

½Rinter
mlf þ Rintra

mlf �: ð31Þ

Averaging, Rintra
mlf vanishes. The average of qm is 1=ðN þ 1Þ, so the average value

of qmK, where K is a constant is K=ðN þ 1Þ and the average of qmm is given by
P

qmm=ðN þ 1Þ ¼ \m[ =ðN þ 1Þ ¼ N=½2ðN þ 1Þ�.
Therefore, the average of Eq. (31), given by

Table 3 The intra-manifold sum in Eq. (28) and sample calculations for the HSE 15N spectrum of Fig. 1

hf-manifold

lf proton line m
P

m0 6¼m

qm0
ðm0�mÞ dHintra

mM , mG, Eq. (31) Bm, G, Eq. (35) V inter
dispmM=V

inter
ppmM V intra

dispmM=V
intra
ppmM

0 0.186 0.0327 0.277 - 0.00932 0.0859

1 0.235 0.495 0.277 - 0.00916 0.108

2 0.301 3.49 0.275 - 0.00901 0.139

3 0.359 13.9 0.270 - 0.00886 0.166

4 0.352 30.6 0.260 - 0.00871 0.163

5 0.226 31.4 0.250 - 0.00855 0.104

6 0.00 0.00 0.246 - 0.00840 0.00

7 - 0.226 - 31.4 0.250 - 0.00825 - 0.104

8 - 0.352 - 30.6 0.260 - 0.00809 - 0.163

9 - 0.359 - 13.9 0.270 - 0.00794 - 0.166

10 - 0.301 - 3.49 0.275 - 0.00779 - 0.139

11 - 0.235 - 0.495 0.277 - 0.00764 - 0.108

12 - 0.186 - 0.0327 0.277 - 0.00748 - 0.0859

Average 0 0.266 - 0.0084 0

The same parameters as Table 2
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dHmlf ¼
qm

2I þ 1

ð2I þ 1ÞVC
c

� �2
1

2A0

1 þ ð4I þ 1Þ
6I

a

A0

½m� m
0 �

� �� �

ð32Þ

after a few steps, yields

Hlf � Hð0Þlf ¼
1

N þ 1

1

2I þ 1

ð2I þ 1ÞVC
c

� �2
1

2A0

ð33Þ

Comparing this result for the region ð2I þ 1ÞVC � ca with that at

ð2I þ 1ÞVC � ca, where

Hlf � Hð0Þlf ¼
1

2I þ 1

ð2I þ 1ÞVC
c

� �2
1

2A0

ð34Þ

shows that the initial shift is a factor of 1=ðN þ 1Þ smaller. The remarks following

Eq. (30) are applicable to Eq. (34), where, upon entering into the nitrogen dark

zone, the line shifts no longer vary as ðVCÞ2
but may be easily interpolated all the

way up to spectrum narrowing using Refs. [5, 13].

2.2.5 Line Broadening

The broadening of line m in any manifold due to HSE is given by [7]

DHL
ppmM � DHL

ppMð0Þ ¼
2

c
ffiffiffi

3
p KexC 1 � qm

2I þ 1

� �

: ð35Þ

And the average

DHL
ppM � DHL

ppMð0Þ ¼
2

c
ffiffiffi

3
p KexC 1 � 1

ð2I þ 1ÞðN þ 1Þ

� �

: ð36Þ

The term in the parentheses is 0.962 for 15N and 0.974 for 14N. The initial

broadening for ð2I þ 1ÞVC � ca is about 2 times that for ð2I þ 1ÞV � ca for 15N

and 3/2 times for 14N where the term in the parentheses becomes 1/2 or 2/3,

respectively.

The broadening of line m due to DD is given by [14]

DHL
ppmM � DHL

ppMð0Þ ¼
2

c
ffiffiffi

3
p ðW like

dd þWunlike
dd ÞC; ð37Þ

where the superscripts denote like- and unlike-spins, respectively. From Eq. (6) of

Ref. [14], in the HVL,

W like
dd ¼ qm

2I þ 1
j2 3

8
Jð0ÞNAð10�3Þ ð38Þ

Wunlike
dd ¼ 1 � qm

2I þ 1

� �

j2 5

24
Jð0ÞNAð10�3Þ: ð39Þ

From Eq. 5, in the HVL limit,
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Wdd ¼ j2 10I þ 9

24ð2I þ 1Þ J
ð0ÞNAð10�3Þ ð40Þ

Wdd pertains to a spectrum without proton hfs; however, by assuming that it is

approximately correct at large concentrations when the manifold has collapsed,

Eq. (37) becomes

DHL
ppmM � DHL

ppMð0Þ ¼
2

c
ffiffiffi

3
p Wdd

1

10I þ 9
½4qm þ 5ð2I þ 1Þ�C ð41Þ

and the average

DHL
ppM � DHL

ppMð0Þ ¼
2

c
ffiffiffi

3
p Wdd

1

10I þ 9

4

N þ 1
þ 5ð2I þ 1Þ

� �

C: ð42Þ

The total line width is given by the sum of Eqs. (35) and (41) and their averages

by the sum of Eqs. (36) and (42).

2.2.6 Spectra in the Proton Perturbation Region Vj jC � ca

Figure 1 shows an instructive example spectrum of an 15N spectrum with hyperfine

coupling to 12 equivalent protons producing 13 lines of binomial relative intensities

spaced by ap ¼ 0:400 G undergoing HSE with VexC=c = 0.120 G or

KexC=c = 0.240 G. The line widths for C ! 0 are DHL
pplfð0Þ = 0.450 G and

DHL
pphfð0Þ = 0.690 G. At C = 0, the lf-manifold is resolved at vlf = 3.2 and the hf-

manifold line unresolved at vhf = 2.09. Figure 1 is constructed by placing 13 proton

lines at positions shifted by dHmlf from their positions given by Eq. (22) and listed

in column 3 of Tables 2 and 3. These shifts are extremely small for the inter-

manifold under these conditions, less than 0.1 mG. In (a), at each position, a

Lorentzian absorption is placed with amplitude given by Eq. (17) and line width by

Eq. (35) using the broadening given in column 4 of Tables 2 and 3. On this scale,

only 9 lines are discernable. In (b), at each position, a Lorentzian dispersion due to

intra-manifold exchanges of amplitude given by Eq. (29) given by the 6th column

of Tables 2 and 3 and in (c) the dispersions due to inter-manifold exchanges using

the fifth column. Part (b) is amplified by a factor of 3 and (c) by a factor of 30; thus,

the intra-manifold dispersion lines are not small while those due to inter-manifold

interaction are. The bold lines in (a)–(c) are the sums of the proton lines where the

quantities DHman
pp	1=2, Vman

pp	1=2, and Yman0

disp	1=2 are defined. Figure 1d shows the sum of

all of the lines in (a)–(c). In (d), the quantities Vman
maxM , Vman

minM , and Xman
ppM are defined.

Note that the peak-to-peak heights of the admixtures, Yman0
maxM � Yman0

minM , are larger than

Vman
ppM because of the addition of the intra-manifold dispersion lines, 1(c). The sums

of the lines in (b) are antisymmetric about the manifold centers and have the general

appearance of absorption lines, as was observed in the 3-line case in Fig. 5c of Ref.

[13]. It is imperceptible in Fig. 1 that the spectrum is asymmetric; however, the

addition of the inter-manifold dispersions, 1c, renders it so. It is this asymmetry that

is exploited by the 2-point method to separate HSE and DD. The ratio of the two

heights, Yman0

maxM and Yman0

minM , rM , yields a quantitative measure of the asymmetry as

follows:
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rM ¼ Yman0
maxM

Yman0
minM

: ð43Þ

The fitting method models 1(d) as admixtures of absorptions and inter-manifold

dispersions and uses the relative heights of these two components to separate HSE

and DD. To be successful, the presence of 1(b) must not lead to intolerable errors.

To gain a better appreciation of the various parameters in Fig. 1, Fig. 16 of

‘‘Appendix 1’’ shows an absorption–dispersion admixture with greatly exaggerated

values of V inter
dispmM=V

inter
ppmM . To put Fig. 1 into perspective, note that KexC=c = 0.24 G

corresponds to C = 8 mM for Kex=c = 30 G/M.

Using the perturbation results to compute the spectrum in Fig. 1 affords the

tremendous advantage of being able to measure each of the parameters in Fig. 1

separately and relate them to those of Eqs. (21), (23), (29), and (36) which yield the

rate constant Kex.

Figure 1 illustrates the case for HSE. For DD, the figure is similar except that the

dispersion components are of the opposite sign, so we do not display it. Call this

spectrum the DD counterpart to Fig. 1. In fact, if we choose Vdd = - 0.12 G, the

line shifts are identical and the values of VdispmM=VppmM are the same magnitude but

opposite sign. A significant difference is in the line width variation, Eq. (41), as

shown in Table 4. In the DD case, the peak-to-peak heights of the admixtures,

Yman0
maxM � Yman0

minM , are smaller than Vman
ppM .

2.3 The Fitting Method

An experiment yields spectra like that in Fig. 1d, admixtures of absorption and

dispersion components, and our task is to obtain the best estimate ofKex together with a

reliable estimate of the uncertainty. For the spectrum of the counterpart to Fig. 1, we

obtainWdd, and in the general caseKex andWdd separately. We apply the approach that

has been successful over the years beginning with the four-point method [20] and

evolving into least-squares fitting method [22], using the Voigt line shape to

approximate the experimental spectrum. ForC ! 0, only the absorption component is

needed in principle; however, in practice instrument dispersion arises due to slightly

unbalanced microwave bridges. Fitting allows the removal of the dispersion artifact.

We may apply the Voigt to absorptions such as that in Fig. 1a, to dispersions

such as that in Fig. 1c, and thus to admixtures such as that in Fig. 1d is the basis of

the method. It is a phenomenological approach.

Therefore, we fit simulated spectra such as that in Fig. 1d and experimental

spectra to the following:

bFig. 1 15N EPR spectrum with hyperfine coupling to 12 equivalent protons producing 13 lines of
binomial relative intensities spaced by ap ¼ 0:400 G undergoing HSE with VexC=c = 0.120 G or

KexC=c = 0.240 G. The line widths at C = 0 are DHL
pplfð0Þ = 0.450 G and DHL

pphfð0Þ = 0.690 G. On

this scale, only nine lines are discernible. The first trace shows the absorptions and the second and third
traces, the intra- and inter-manifold dispersions, respectively. Part b is amplified by a factor of 3 and c by
a factor of 30. The bold lines in a–c are the sums of the proton lines where the quantities DHman

ppM , Vman
ppM ,

and Yman0
dispM are defined. d Sum of all of the lines in a–c and defines the quantities Vman

maxM, Vman
minM, and Xman

ppM
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Y 0 ¼
X

M

½Vman
ppMS

0abs
M þ Vman

dispMS
0disp
M �; ð44Þ

where S0abs
M is the sum-function approximation to the Voigt absorption of unit peak-

to-peak intensity as follows:

S0abs
M ¼ � gabsM

�8nM
ð3 þ n2

MÞ
2
þ ð1 � gabsMÞ

ffiffiffi

e
p

2
e
�n2

M
2

( )

; ð45Þ

where �8nMð3 þ n2
MÞ

2
and

ffiffi

e
p

2
e
�n2

M
2 are the Lorentzian and Gaussian absorptions of

unit peak-to-peak height, respectively.

S
0disp
M is the sum-function approximation to the Voigt dispersion of unit extremum

intensity as follows [23]:

S
0disp
M ¼ gdispM

3ð3 � n2
MÞ

ð3 þ n2
MÞ

2
þ ð1 � gdispMÞð1 � n2

M � 0:27n4
MÞe

�n2
M

2

( )

: ð46Þ

Unfortunately, Eq. (16) of Ref. [23] has a typographical error omitting the �n4
M

term.

In Eqs. (45) and (46)

nM ¼ 2
H � HM

DHman
ppM

; ð47Þ

where H is the swept magnetic field, and HM and DHman
ppM are the resonance field and

peak-to-peak line width of the manifold, respectively. The one-to-one relationship

(map) of the mixing parameter gabsM with the Voigt parameter vM may be found by

Table 4 Sample calculations for the lf-manifold of the DD counterpart to Fig. 1 15N spectrum not shown

lf proton line m
P

m0 6¼m

qm0
ðm0�mÞ dHintra

mM , mG, Eq. (31) Bm, G, Eq. (35) V inter
dispmM=V

inter
ppmM V intra

dispmM=V
intra
ppmM

0 - 0.186 0.0327 0.346 - 0.00748 - 0.0859

1 - 0.235 0.495 0.347 - 0.00764 - 0.108

2 - 0.301 3.49 0.349 - 0.00779 - 0.139

3 - 0.359 13.9 0.354 - 0.00794 - 0.166

4 - 0.352 30.6 0.363 - 0.00809 - 0.163

5 - 0.226 31.4 0.373 - 0.00825 - 0.104

6 0.00 0.00 0.378 - 0.00840 0.00

7 0.226 - 31.4 0.373 - 0.00855 0.104

8 0.352 - 30.6 0.363 - 0.00871 0.163

9 0.359 - 13.9 0.354 - 0.00886 0.166

10 0.301 - 3.49 0.349 - 0.00901 0.139

11 0.235 - 0.495 0.347 - 0.00916 0.108

12 0.186 - 0.0327 0.346 - 0.00932 0.0859

Average 0 0.357 - 0.00840 0

Parameters: 15A0 = 22 G, a = 0.4 G, VddC=c = - 0.12 G, DHL
pp�1=2ð0Þ = 0.45 G, and

DHL
ppþ1=2ð0Þ = 0.69 G. Line shifts due to inter-manifold interactions are less than 0.1 mG for all lines
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fitting Eq. (44) to either a Voigt or any pattern. In principle, vM may also be

obtained from gdispM; however, the accuracy is considerable poorer. It was important

to develop Eq. (46) with a variable gdispM to ensure a good fit with the IMB

dispersion component so as not to distort the other parameters in the fit.

From a fit value of gabsM , a value of vM is computed and DHLðVoigtÞ
ppM is obtained

from the Dobrayakov–Lebedev relation [24]

DHLðVoigtÞ
ppM ¼ DHman

ppM

�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4v2
M

p

� �

2v2
M

: ð48Þ

Equation (8) then yields DHGðVoigtÞ
ppM . The fit of Eq. (44) to a manifold due to 12

equivalent protons, with a dispersion admixture of VdispM=VppM = 0.3 shows a

residual with a maximum of 0.5% (Fig. 9a of [23]), DHLðVoigtÞ
ppM are accurate to 1.1%

at vM = 2.5 (incipiently resolved) and less than 1% for vM \ 2.3. See Table 5 of

Ref. [23]. Therefore, the fidelity of Eq. (44) has been established with IHB

admixtures for C ! 0. To apply it to spectra undergoing HSE and/or DD, we

require that as Vj jC increases, the line shape is still accurately given by the Voigt.

This assumption is easily checked by fitting simulations of Eq. (1) and we show in

‘‘Appendix 2’’ that they are indeed excellent Voigts for both HSE and DD.

To evaluate hVdispM=VppMi from measured values of Vman
dispM=V

man
ppM it is necessary

to take into account that as vM increases, Vman
dispM decreases more rapidly than Vman

ppM

[23]. This problem was treated in detail in Ref. [23] for C ! 0. The discrepancies of

values of hVman
dispM=V

man
ppMi directly measured from the separate components, or from

admixtures fitted to Eq. (45) are negligible,\ 0.3%. The desired transformation

from Vman
dispM=V

man
ppM to VdispM=VppM may be effected by interpolation of the results are

given in column 6 of Table 5 of Ref. [23], or, to within 1% by the following:

VdispM

VppM

	 


¼ hðvMÞ
Vman

dispM

Vman
ppM

; ð49Þ

where

hðvMÞ ¼ 1 þ 0:1vM � 0:019v2
M: ð50Þ

To proceed, we make two assumptions:

2.3.1 Assumption 1

DHLðVoigtÞ
ppM is equal to the average value of the Lorentzian line widths in the

manifold:

DHLðVoigtÞ
ppM ¼ hDHL

ppMi: ð51Þ

We have used this assumption in the past [11, 18, 19, 25–28] on simulated and

experimental spectra and have obtained reasonable results. Here, we confirm this

assumption for ð2I þ 1Þ Vj jC � ca by fitting Eq. (44) to Fig. 1d and add a high

level of confidence by comparing DHLðVoigtÞ
ppM for the experimental results for

deuterated vs. protonated Tempol.
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2.3.2 Assumption 2

The Voigt fit value of hVman
dispM=V

man
ppMi transformed by Eq. (49) is equal to the average

of hVdispM=VppMi.
This assumption has not been tested in the past because all of the experiments

were extended to values of C well beyond the proton intermediate regime and fits to

the data were dominated by the (much) larger values of Vman
dispM=V

man
dispM where the

lines were Lorentzian anyway. We shall see that this assumption results in

significant errors for the proton dark zone because of the interference of the intra-

manifold dispersion components.

It is important to note the difference in the resonance fields, shown in Fig. 1, or

better, from ‘‘Appendix 1’’, and the point at which the spectrum crosses the

baseline. The former is available from a fit of the spectrum, but not from the

spectrum itself. Equations (44) and (58) include explicitly the overlap between the

nitrogen manifolds. In principle, DHman
ppM is different from DXman

ppM , but they are the

same within experiment error in this work. Therefore, DHman
ppM can be determined by

fitting or by direct measurement; the advantage of the former is that it’s less noisy

and is determined to higher precision.

From values of hHMi, the line shifts of the manifolds due HSE and/or DD may be

computed. For cases in which HSE dominates, these shifts may be used to estimate

the mean time that two nitroxides reside within a cage as detailed in Refs.

[6, 25, 26, 29–31]; however, this is outside the scope of the present paper.

From quantities derived from fitting a spectrum to Eq. (44) or (55), the

concentration broadening, BM , is computed from the follow:

BM ¼ DHLðVoigtÞ
ppM � DHL

ppð0Þ; ð52Þ

which, when plotted against C, give straight lines of slope, B
0
M , and intercept

DHL
ppð0Þ.

B
0

M ¼ dDHLðVoigtÞ
ppM =dC ð53Þ

In the case of HSE for 14N, BM is larger for lf and hf than for cf upon entering

into the nitrogen dark zone; however, the average over the three lines is linear with

C all of the way through coalescence and narrowing of the nitrogen manifolds [13].

In this study, the effect is barely outside of experimental error. Therefore, in this

work, B
0
M is independent of M allowing us to find mean values and estimates of the

errors from the standard deviations.

Plots of hVdispM=VppMi against BM=A0 are linear, as follows:

hVdispM

VppM

i ¼ kM
BM

A0

: ð54Þ

Giving two or three values of kM for 15N and 14N, respectively.

From B
0

and k; the rate constants are found from Ref. [18] as follows:

Kex ¼
ffiffiffi

3
p

c
2

� �

2
21k þ 8

36

� �

15B0; ð55Þ
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Kex ¼
ffiffiffi

3
p

c
2

� �

3

2

19k þ 8

27

� �

14B0; ð56Þ

15Wdd ¼
ffiffiffi

3
p

c
2

� �

28 � 21k

36

� �

15B0; ð57Þ

14Wdd ¼
ffiffiffi

3
p

c
2

� �

19 � 19k

27

� �

14B0: ð58Þ

To compare the DD results of the two isotopes,

14Wdd ¼ 19

21
15Wdd ð59Þ

where the superscript is the atomic number of the isotope.

2.4 Theory of the Two-Point Method

The algorithm introduced in Ref. [14] and extended to IHB spectra in Ref. [17]

requires the measurement of two points, at the maximum and minimum of each

manifold, as illustrated in Fig. 1. The asymmetry parameter, pM , for manifold M is

defined in Eq. (15) of Ref. [17] as follows:

pM ¼
ffiffiffi

3
p

2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 rMj j � 1
p

� �

ð60Þ

From the equation following Eq. (17) and Eq. (28) of Ref. [14], the rates of

transfer of spin coherence for lf, are as follows:

VC ¼ � 1

2I þ 1
plf

15A0; ð61Þ

with the opposite sign for hf. Therefore, with a measurement of A0, the slopes of

linear plots of the right-hand side of Eq. (61) versus C yield the rate constants of

spin coherence transfer, V .

For Lorentzian lines,

pmM ¼ � 3
ffiffiffi

3
p

4

VdispmM

VppmM

: ð62Þ

To pass from pmM to pman
M , the value measured from an IHB spectrum, we invoke

assumption 2 above, which has been justified in the Appendix to Ref. [17]

pM ¼ � 3
ffiffiffi

3
p

4
hVdispM=VppMi: ð63Þ

Thus, both pM and VdispM=VppM contain the same information, the former

obtained from two points on each manifold and the latter from a fit to all of the

points including manifold overlap.
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2.5 Notation

We note that the notations in [14,17] are different, being related by the following:

Vdd ¼ � Kdsct

2I þ 1
; ð64Þ

Wdd ¼ Kdsd þ
Kdsct

2I þ 1
: ð65Þ

3 Materials and Methods

14NH was prepared from triacetonamine. 15 NH, and 15 ND (purity 95%) were

prepared from isotope-enriched triacetonamine-15N and 15N-d17, respectively, from

literature procedures [32]. Triacetonamine-15N was prepared from 15NH4Cl (isotope

enrichment 99.9%) according to the method by Pirrwitz and Schwarz [33] with

minor modifications (Scheme 2) [34]. An additional source of 14NH, which we

denote 14 NHR, was purchased from Sigma and used as received. 60 wt% aqueous

glycerol (98%) was prepared using distilled water. Nitroxide solutions were

prepared gravimetrically from stock solutions with concentrations varying from 0.1

to 40–50 mM for 15 NH, 15 ND, and 14 NHR and 0.1–88 mM for 14 NH. Samples

were drawn into 50-lL disposable pipettes and sealed at both ends with a flame.

EPR spectra were obtained of each of the four series of samples at X-band at 273,

298, 323, 333, and 340 K with a Bruker EMX Plus spectrometer equipped with a

nitrogen-flow temperature controller with a precision of 0.1 K. The following

parameters were used throughout: microwave power, 0.2 mW; modulation

amplitude, 0.1 G; modulation frequency, 100 kHz; time constant, 5.12 ms;

conversion time, 40 ms. The field-sweeps and resolutions, in parentheses, were as

follows: 15 NH (50 G, 50 mG) 15 ND (50 G, 50 mG), 14 NH (75 G, 10 mG) and

14 NHR (75 G, 50 mG). Two or three spectra were recorded of each sample at each

temperature, one after the other. A saturation curve, signal intensity vs. the square

root of the microwave power, of 50-mM 14NH in 60 wt% glycerol at RT departed

from linearity by 1.5% at 3 mW and 6% at 5 mW. For a 0.6-mM sample, the curve

departed from linearity at 1.2 mM. Therefore, the measuring microwave power, 0.2

mW, is well below where any saturating effects may be observed.

3.1 Correcting for Instrumental Dispersion

Correcting for instrumental dispersion has been discussed in previous papers; see,

for example, the Supplemental Information of Ref. [18] and references therein.

Briefly, we exploit the fact that instrumental dispersion has the same sign for all

values of M and correct by subtracting the dispersion for the central manifold from

the other two for 14N and subtracting the average value of the outer manifolds from

the value of each manifold for 15N. From 14N, we obtain two values of hpMi or

Vman
dispM=V

man
dispM from which an estimate of the systematic error may be obtained. From

15N, only one value of each is available: we use the systematic error from 14N as an

1418 B. L. Bales et al.

123



estimate for 15N. Because we employ the slopes of the two measures of dispersion,

an alternative method is available by finding the slope of the two outer lines for both

isotopes yielding two values pM or Vman
dispM=V

man
dispM for either isotope. This latter

alternative supposes that the instrumental dispersion is constant in a series of

measurements at different values of C, a supposition that is rather good [18]. The

two approaches give the same results within experimental error.

4 Results

4.1 Results from Perturbation Theory

The results of fitting the perturbation theory spectrum of Fig. 1d with Eq. (44) and

applying the two-point method are given in columns 3 and 4 of Table 5. Results for

the two-point method were obtained by measuring rM , Eq. (43) on the spectrum of

Fig. 1. The first entry in columns 3 and 4 pertain to the spectrum in Fig. 1d. The

second entries give the results in which the intra-manifold were absent. In other

words, comparing the first and second entries shows the effect of the intra-manifold

dispersions on the final results. Table 5 shows that the values of Vman
dispM=V

man
ppM are

reduced by about 13% by the presence of the intra-manifold dispersions with the fit

method, while the two-point method is only reduced by about 7%. However, the fit

method is more accurate than the two-point method with or without the intra-

manifold dispersions (Table 5).

Table 5 Comparison of perturbation and exact theories for 15N KexC=c = 0.24 G

Method Parameter Perturbation lf Perturbation hf Equation (1) lf Equation (1) hf

Two-point pM - 0.0083a 0.0089a - 0.0078 0.0087

- 0.0078b 0.0086b – –

Two-point Vman
dispM=V

man
ppM 0.0064a - 0.0069a - 0.0060 0.0060

0.0060b - 0.0066b – –

Fit Vman
dispM=V

man
ppM 0.0074a - 0.0076a 0.0056 - 0.0061

0.0086b - 0.0086b – –

Fit DHLðVoigtÞ
ppM , G 0.727a 0.940a 0.704 0.927

0.781b 1.01b – –

Fit DHGðVoigtÞ
ppM , G 1.22a 1.25a 1.23 1.25

1.32b 1.33b – –

Fit DH0ðVoigtÞ
ppM , G 1.64a 1.81a 1.63 1.80

1.77b 1.93b – –

Measuredc Vwithintra
ppM =Vwithout

ppM 1.19 1.16 – –

Hyperfine coupling to 12 equivalent protons, ap ¼ 0:400 G. Input values: DHL
pplfð0Þ = 0.450 G,

DHL
pphfð0Þ = 0.690 G, and hV inter

dispM=V
inter
dispMi = 0.0084. For C = 0, DHGðVoigtÞ

pphf = 1.44 G
aIncluding intra-manifold dispersions
bExcluding intra-manifold dispersions
cTaken directly from the spectrum
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The final two columns of Table 5 are computed from the exact theory, Eq. (1),

with the same input parameters as the perturbation spectrum in Fig. 1. The spectrum

is displayed in Fig. 2.

Because the two manifolds are of different line shapes, we may compare them.

The largest discrepancy between the two manifolds is for Vman
dispM=V

man
ppM: from fitting,

3% for Fig. 1 and 7% for Eq. (1); from two-point, 7% for Fig. 1 and 11% for

Eq. (1).

Summarizing the discrepancies between perturbation theory and Eq. (1) for the

lf-manifold: from fitting, Vman
dispM=V

man
pplf , 14% and DHLðVoigtÞ

pplf , 0.6%; from two-point

method, Vman
displf=V

man
pplf , 7%. The small discrepancy in DHLðVoigtÞ

pplf shows that the Voigt

shape extracts this value rather precisely.

The errors computed from the known input values, are as follows: from fitting

Vman
displf=V

man
pplf , 33% and DHLðVoigtÞ

pplf , 1.5%; from two-point method Vman
displf=V

man
pplf , 29%.

We may determine the effect of the intra-manifold dispersions in Fig. 1 by

omitting them and fitting or applying the two-point method. We find that the errors

computed from the known input values are as follows: from fitting Vman
displf=V

man
pplM , 2%

and DHLðVoigtÞ
pplf , 9%; from two-point Vman

displf=V
man
pplf , 29%.

To summarize, errors in Vman
dispM=V

man
pplM are substantial using either method, those

from the fitting method mostly provoked by the presence of the intra-manifold

dispersions. The values of DHLðVoigtÞ
ppM , only available from the fitting method, are too

large by 2% for lf and too small by 2% for hf. These errors are found both from the

perturbation result, Fig. 1 and from Eq. (1). In other words, the Lorentzian line

width is found with excellent precision from either Fig. 1 or Eq. (1). Note that

dB=dC = 0.267 G/M for the manifolds at KexC=ac = 0.600, Eq. (36), is about

twice that at KexC=ac � 1 where dB=dC = 0.139 G/M. See Eq. (36) and the

comments immediately after.

4.2 Results from the Exact Theory, Eq. (1)

Spectra were computed from Eq. (1) for a 15N nitroxide, A0 = 22 G with hyperfine

coupling to 12 equivalent protons, a = 0.4 G, as functions of KexC=c or WddC=c
with DHL

pplfð0Þ = 0.45 G and DHL
pplfð0Þ = 0.69 G. The lf-manifolds of spectra

simulated near the incipient resolution limit for HSE and DD are shown in Fig. 19

of ‘‘Appendix 2’’. The spectra were fit with Eq. (44) and treated with the two-point

method.

Figure 2a shows the exact spectrum using the same parameters as Fig. 1; i.e., for

KexC=c = 0.24 G. Figure 2b, c display the inter-manifold dispersions and the

absorptions, respectively, derived from fits to Eq. (44). Because the model of

Eq. (44) does not include an extra term for the intra-manifold dispersions, these

cannot appear. It would be futile to attempt to include such an extra term in the fit

function, because it has the same symmetry as the absorption and the fit parameters

would be unstable to say the least. In finding a fit, Eq. (44) does very well in

discriminating against the intra-manifold dispersions as evidenced by the small

residuals overlaying the spectrum in Fig. 2a; however, the parameters for Vman
ppM and
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Fig. 2 a The exact spectrum computed with Eq. (1) of a 15N nitroxide with the same parameters as
Fig. 1. The spectrum fit to Eq. (44) produces the dispersion (b), and absorption (c) manifolds,
respectively, and the residuals overlay the spectrum. The dispersion manifolds are amplified by 30
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DHman
ppM are in error. The magnitude of the errors may be judged by the perturbation

results of Fig. 1 where all of the components are available separately. Table 5

shows the results of the fit and then those of the fit leaving out the intra-manifold

dispersions.

Figure 3 shows the variation of line widths with KexC=c, DHman
pphf , squares;

DHLðVoigtÞ
pphf , circles; and DHGðVoigtÞ

ppM , triangles. The straight line near the origin is the

predicted initial values of DHLðVoigtÞ
pphf , Eq. (36). The inset shows more detail near the

origin demonstrating that the initial increase in DHLðVoigtÞ
pphf is accurately obtained

under assumption 1. Calculating d DHLðVoigtÞ
pphf

h i

=d KexC=c½ � numerically, not shown,

we find that the slope from the fit extrapolated to the origin is 1.14 compared with

the perturbation value of 1.11. Assumption 1 is extremely accurate in the most

difficult portion of the data.

Figure 4 shows similar line-width data as Fig. 3 with the same input parameters

except for DD. Note that while the initial slope of DHLðVoigtÞ
pphf is larger than at higher

values of C for HSE, Fig. 3 it is smaller for DD. The initial slope of DHLðVoigtÞ
pphf is

Fig. 3 Line widths for the hf manifold obtained from fitting spectra simulated from Eq. (1) for HSE:
15N, A0 = 22 G with hyperfine coupling to 12 equivalent protons, a = 0.4 G. Squares, DHman

pphf ; circles,

DHLðVoigtÞ
pphf ; and triangles, DHGðVoigtÞ

pphf . The straight line near the origin is the predicted initial values of

DHLðVoigtÞ
pphf , Eq. (36). The inset shows more detail near the origin demonstrating that the initial increase in

DHLðVoigtÞ
pphf is accurately obtained under assumption 1
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computed from Eq. (42). Also note the interesting difference in the behavior of

DHGðVoigtÞ
pphf in Figs. 3 and 4, rapidly decreasing for HSE and slowly increasing before

leveling out for DD.

Figure 5 shows values of Vman
disphf=V

man
pphf for the hf-manifold of the same spectra as

Figs. 3 and 4 from fitting, circles and diamonds, and the two-point method, triangles

and squares. For HSE, both methods yield reasonable results until line overlap near

VC=c = 2 degrades the fidelity of the two-point method. For DD, fitting yields

reasonable results over the whole range while the two-point method is not useful

over any range. The agreement, however, is deceptive on the scale of Fig. 5 through

the proton dark zone. See the inset to Fig. 5. In an experiment, one usually finds a

linear fit of Vman
disphf=V

man
pphf as a function of C or B=A0 (which is proportional to C) so

errors in the value of Vman
disphf=V

man
pphf and the slope are important. Figure 6 shows these

errors as a function of Vj jC=ca. Unfortunately, both types of errors are large for

both methods through the dark zone. Curiously, the two-point method is more

accurate up to about Vj jC=ca = 3 because the underestimate of Vman
disphf=V

man
pphf ,

inherent in both methods, is offset by the overestimate due to line overlap. Above

Vj jC=ca = 5, the two-point method yields less accurate results.

Fig. 4 The same as Fig. 3 except for DD. Note that the initial slope of DHLðVoigtÞ
pphf is larger than at higher

values of C for HSE, Fig. 3 but is smaller for DD. The initial slope of DHLðVoigtÞ
pphf is computed from

Eq. (42). Also note the interesting difference in the behavior of DHGðVoigtÞ
pphf , rapidly decreasing for HSE

and slowly increasing before leveling out for DD
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Doubly integrated intensities of experimental spectra are problematic because

of limited sweep width and baseline drift; however, if a manifold is a good Voigt,

they are easily calculated to excellent precision from DH0
ppM and Vman

ppM by

measuring vM and using Eqs. (18) and (34) of Ref. [20]. This procedure works for

C ! 0 spectra because there is no underlying intra-manifold dispersion compo-

nent that distorts the values DH0
ppM and Vman

ppM from those pertaining strictly to the

absorption component (Fig. 1a). The extent of this effect for the perturbation

theory spectrum of Fig. 1 may be ascertained by comparing the results from

spectra simulated with and without the intra-manifold dispersion components. The

effect of the intra-manifold dispersions may be noted in Fig. 7, which is a plot of

the doubly integrated intensities for spectra computed with Eq. (1) using the

parameters given in the footnote to Table 5. The true doubly integrated intensity is

constant because the intra-manifold dispersion integrates to zero. The true doubly

integrated intensity would be difficult (almost impossible) to measure from an

experimental spectrum because we measure over a finite magnetic field sweep

width. Fortunately, because the values of DH0
ppM are too large and Vman

ppM too small,

the resulting apparent doubly integrated intensities are only 3% too large for HSE

and 5% too small for DD.

Fig. 5 Values of �Vman
disphf=V

man
pphf from fitting, circles (HSE) and diamonds (DD) and from the two-point

method, triangles (HSE) and squares (DD). Same parameters as in Fig. 3. The straight lines are the
theoretical prediction computed with Eq. (30). Near the origin the two methods give similar results;
however, overlap with the lf-manifold begins to yield erroneous results for the two-point method at higher
concentrations
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4.3 Experimental Results

Figure 8a shows an EPR spectrum of 5-mM 15NH in 60%AG at273 K, and the lf-

and hf-manifolds, Fig. 8b, c, respectively, on an expanded abscissa by omitting

13 G. This is not a spectrum that we include in the analysis because it is not

Fig. 6 The fractional error in hVdisphf=Vpphfi by analyzing exact spectra computed from Eq. (1) for HSE
(a) and DD (b). Fitting, solid lines and the two-point method, dashed lines. The fractional error in
dhVdisphf=Vpphf=idð Vj jCÞ for HSE (c) and DD (d). For experiments analyzed by finding the slope of
curves such as those in Figs. 12 and 13, (c, d) are appropriate
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unresolved; however, it serves to clarify our terminology. We refer to spectra such

as Fig. 8b as partially resolved and such as Fig. 8c as showing incipient resolution.

These qualitative descriptions are quantified by the value of vM; for Fig. 8b vlf ¼
3:0 and for Fig. 8c, vhf ¼ 2:4. In Fig. 8b, c, the overlying traces are the residuals

between the experimental spectrum and the fit to Eq. (44), showing narrow lines

indicative of incipient resolution; the more resolved, the larger are these lines. We

show some data in this paper for partially resolved manifolds; however, our analysis

is restricted to values of v\2:3.

Figure 9a displays an EPR spectrum of 12-mM 15ND in 60 wt% aqueous

glycerol at 273 K, Fig. 9b the residuals amplified by 10, Fig. 9c the dispersion

component of the fit amplified by a factor of 10, and Fig. 9d the absorption

component of the fit. The residuals are composed mostly of an 14N Tempol

impurity, the small, center line and two of the outer lines, and 8 lines due to 13C

in natural abundance. The smaller innermost lines, closely spaced, for the lf-

manifold, vlf = 0.70, are due to the inherent resolution in the unresolved

spectrum. These are not evident in the hf-manifold because of the lower value of

vhf = 0.32. The dispersion components for lf are negative, indicative of DD

spectra; they are not proportional in height to the lines in 7d because of

instrumental dispersion. Spectra of 15 HD at all concentrations and temperatures

are unresolved.

Figure 10 shows a spectrum of 12-mM 15NH in 60%AG at 273 K with an

amplification of 2.5 relative to Fig. 9. The impurity line due to 14NH is evident in

the center of the spectrum; however, the 13C lines are now dominated by the

inherent proton resolution in the unresolved spectrum. These residuals are expected

Fig. 7 The apparent doubly integrated intensity Eqs. (18) and (34) of Ref. [20] normalized at c = 0 for
HSE, circles, and DD, squares. The true doubly integrated intensity is constant, but the presence of the
intra-manifold dispersions distorts the values of both DH0

ppM and Vman
ppM while maintaining the line shape.

The values of DH0
ppM are too large and Vman

ppM too small, resulting in apparent doubly integrated intensities
only 3% too large for HSE and 5% too small for DD
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because of the relatively high values of vlf = 1.8 and vhf ¼ 1:2, for lf and hf,

respectively.

Figure 11 displays values of DHman
pplf and hDHL

pplfi at 340 K for 15NH, Fig. 11a

and 15 ND, Fig. 11b and at 273 K for 15 NH, Fig. 11c and 15 ND, Fig. 11d. The

Fig. 8 a EPR spectrum of 5 mM 15N-Tempol-H in 60% aqueous glycerol at 298 K, b lf-, and c hf
manifolds, respectively, with the central 13 G omitted. In b, c, the overlying traces are the residuals
between the experimental spectrum and the fit to Eq. (44), showing narrow lines indicative of incipient
resolution; the more resolved, the larger are these lines
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Fig. 9 a EPR spectrum of 12 mM 15 ND in 60 wt% aqueous glycerol at 273 K, b the residual amplified
by 10, c the dispersion component of the fit amplified by a factor of 10, and d the absorption component
of the fit. The residual is composed mostly of an 14N Tempol impurity, the inner line and two outer lines,
and 8 lines due to 13C in natural abundance. The smaller innermost lines, closely spaced, are due to the
mismatch between the Voigt shape and the experimental spectrum. The dispersion lines are negative,
typical of DD spectra; they are not proportional in height to the lines in d because of instrumental
dispersion
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results from Figs. 9 and 10 are indicated by the vertical arrows. For those spectra,

DHman
pplf is larger than DHLðVoigtÞ

pplf by 125 and 32% for 15 NH and 15 ND, respectively;

thus, a considerably larger correction is required for 15 NH and the residuals are

considerably larger. Nevertheless, the slope of DHLðVoigtÞ
pplf for the two isotopes are

within 2.6% of the mean value of 38.5 G/M. The need for correction for IHB is

mitigated by deuteration but, for careful work, is not eliminated. Slopes of the

straight lines yield B0 � dDHLðVoigtÞ
pplf =dC and the intercepts DHL

pplfð0Þ. These slopes

Fig. 10 a EPR spectrum of 12 mM 15N protonated Tempol in 60 wt% aqueous glycerol at 273 K at a
relative amplification of 2.5 relative to Fig. 1. See the caption of Fig. 9 for a description of b–d. The
residual in this case, in addition to 15N and 13C lines, shows more intense lines in the center of each
manifold due to incipient resolution due to proton hyperfine coupling
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Fig. 11 Peak-to peak line widths of the lf manifold, DHman
pplf , circles, and DHLðVoigtÞ

pplf , squares. a 15 NH,
340 K; b 15 ND, 340 K; c 15 NH, 273 K; d 15 ND, 273 K. The straight line is a least-square fit to d
DHLðVoigtÞ

pplf and the dashed line a quadratic fit to DHman
pplf to guide the eye. The vertical arrows indicate the

spectra in Figs. 9 and 10, respectively. For those spectra, DHman
pplf is larger than DHLðVoigtÞ

pplf by 125 and 32%
for 15 NH and 15 ND, respectively; thus, a considerably larger correction is required for 15 NH and the
residuals are considerably larger. Nevertheless, the slope of DHLðVoigtÞ

pp�1=2
for the two isotopes are within

2.6% of the mean value of B0 = 38.5 G/M
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and intercepts together with those from the other manifolds (not shown) are

averaged and given in Tables 6, 7, 8 and 9.

Figure 12a is a plot of Vdisplf=Vpplf for 15 NH (open symbols) and 15ND (closed

symbols) at 340 K (squares), 298 (circles), and 273 K (diamonds) corrected for

instrumental dispersion. Figure 12b Shows values of Vdisplf=Vpplf (open symbols)

Table 6 Rate constants 15 NH

T (K) ka B0a (G/M) Kex=c
a (G/

M)

Wdd=c
a (G/

M)

Vb (M-1) Kex=c
b (G/

M)

Wdd=c
b (G/M)

273 - 0.03 ± 0.03 37.0 ± 1.4 13.2 ± 1.2 25.4 ± 1.1 0.717 ± 0.96 15.4 ± 2 24.4 ± 1.7

298 0.50 ± 0.03 44.4 ± 1.2 39.7 ± 1.7 18.6 ± 0.8 15.9 ± 1.2 41.8 ± 2 17.5 ± 1.7

323 1.04 ± 0.03 49.4 ± 1.0 71.1 ± 2.1 7.3 ± 0.8 35.3 ± 1.5 73.9 ± 3 5.85 ± 1.8

333 1.14 ± 0.03 55.3 ± 0.7 85.1 ± 2.1 5.4 ± 0.9 43.2 ± 1.8 88.5 ± 3 3.64 ± 1.8

340 1.25 ± 0.03 63.1 ± 1.1 104 ± 2.7 2.7 ± 1.0 55.3 ± 2.2 110 ± 4 - 0.511 ± 2.5

Wdd for 15N may be compared with that for 14N by multiplying by 21/19 for the HVL or 15/14 for the

LVL. [18]
aDerived from fitting
bDerived from the two-point method

Table 7 Rate constants 15 ND

T (K) ka B0a (G/M) Kex=c
a (G/

M)

Wdd=c
a (G/

M)

Vb (M-1) Kex=c
b (G/

M)

Wdd=c
b (G/

M)

273 - 0.05 ± 0.03 36.7 ± 1.3 12.4 ± 1.2 25.6 ± 1.1 - 1.05 ± 0.89 12.5 ± 2 25.5 ± 1.6

298 0.50 ± 0.03 41.0 ± 1.0 36.7 ± 1.7 17.2 ± 0.8 15.2 ± 0.84 39.5 ± 2 15.8 ± 1.4

323 0.99 ± 0.03 50.9 ± 0.6 70.3 ± 1.7 8.9 ± 0.7 36.5 ± 1.1 76.4 ± 2 5.89 ± 1.3

333 1.10 ± 0.03 57.7 ± 0.6 86.1 ± 1.9 6.9 ± 0.8 46.4 ± 1.1 94.4 ± 2 2.76 ± 1.3

340 1.14 ± 0.03 61.9 ± 0.7 94.9 ± 2.1 6.1 ± 0.9 51.7 ± 1.3 104 ± 2 1.48 ± 1.5

Wdd for 15N may be compared with that for 14N by multiplying by 21/19 for the HVL or 15/14 for the

LVL [18]
aDerived from fitting
bDerived from the two-point method

Table 8 Rate constants 14 NH

T (K) ka B0a (G/M) Kex=c
a (G/

M)

Wdd=c
a (G/

M)

Vb (M-1) Kex=c
b (G/

M)

Wdd=c
b (G/

M)

273 0.13 ± 0.04 34.0 ± 0.6 17.1 ± 1.2 18.0 ± 0.9 - 0.3 ± 6 12 ± 14 21 ± 5

298 0.57 ± 0.02 43.8 ± 0.7 39.7 ± 0.9 11.5 ± 0.47 7.1 ± 5.3 32 ± 11 17 ± 5

323 0.90 ± 0.02 55.8 ± 0.6 67.5 ± 1.5 3.31 ± 0.84 17 ± 6 56 ± 12 11 ± 5

333 0.97 ± 0.01 63.0 ± 0.8 79.9 ± 1.3 1.3 ± 0.5 23 ± 5 73 ± 11 6 ± 5

340 0.13 ± 0.04 34.0 ± 0.6 87.6 ± 1.9 0.7 ± 1.1 28 ± 7 86 ± 15 2 ± 6

aDerived from fitting
bDerived from the two-point method
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and �Vdisphf=Vpphf (closed symbols) for 14 NH. These values have been corrected

from fitted values using Eq. (49); however, except for 273 K, the corrections are

smaller than the symbols. The data vary linearly with the normalized broadening,

B=A0; however, do not extrapolate to the origin, especially at 273 K. We have

observed this phenomenon in the past [31] and have rationalized it by simulating

C ! 0 spectra including the pseudo-secular electron–nuclear dipolar interaction.

We observed (see Fig. 4 of the Supplemental Information of Ref. [31]) spectra

characteristic of transfer of spin coherence with negative values of Vdisplf=Vpplf .

Marsh [35] has since demonstrated that such transfer occurs in the absence of HSE

Table 9 Rate constants 14 NHR

T (K) ka B0a (G/M) Kex=c
a (G/

M)

Wdd=c
a (G/

M)

Vb (M-1) Kex=c
b (G/

M)

Wdd=c
b (G/

M)

273 0.08 ± 0.01 36.6 ± 0.6 16.6 ± 0.6 20.6 ± 0.5 2.1 ± 1.0 19 ± 2 19 ± 1

298 0.55 ± 0.01 46.2 ± 0.5 41.0 ± 0.7 12.7 ± 0.4 10.7 ± 0.6 40 ± 1 13 ± 1

323 0.89 ± 0.02 60.8 ± 0.7 72.6 ± 1.3 4.23 ± 0.7 22.9 ± 0.9 72 ± 2 5 ± 2

333 0.937 ± 0.014 69.8 ± 0.7 86.6 ± 1.2 2.68 ± 0.6 30 ± 2 90 ± 4 0.3 ± 1.9

340 0.97 ± 0.020 77.4 ± 0.7 98.3 ± 1.7 1.51 ± 1.0 30 ± 2 94 ± 4 5 ± 2

aDerived from fitting
bDerived from the two-point method

Fig. 12 a Vdisplf=Vpplf for 15 NH (open symbols) and 15 ND (closed symbols) at 340 K (squares), 298
(circles), and 273 K (triangles) corrected for instrumental dispersion. b Vdisplf=Vpplf (open symbols) and
�Vdisphf=Vpphf (closed symbols) for 14 NH. These values have been corrected using Eq. (49); however,
except for 273 K, the corrections are smaller than the symbols. The data vary linearly with the normalized
broadening, B=A0; however, do not extrapolate to the origin, especially at 273 K
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or DD; thus, it is correct to find the slopes 14k and 15k without constraining the fits to

the origin.

The slopes of the straight lines, 14k or 15k, and the intercepts are given in

Tables 6, 7, 8 and 9 together with the rate constants computed from Ak and AB0.
Figure 12 demonstrates two interesting points: (1) the intercepts show a

systematic difference for protons vs deuterons (Fig. 12a) and (2) (Fig. 12b) the

lf- and hf-manifolds show the same intercept as is necessary for transfer of spin

coherence due to the pseudo-secular electron–nuclear dipolar interaction.

Figure 13a shows values of �plf
15A0=2 for the lf of 15NH, open symbols, and for

15ND, closed symbols, at temperatures 273 K (diamonds), 298 K (circles), and

340 K, (squares), for the same data as those in Fig. 12. Figure 13b shows values of

�plf
14A0=3 (open symbols) and þphf

14A0=3 (closed symbols) for 14NH. Unlike the

plots in Fig. 12, these deviate from linearity as C increases because of overlap with

adjacent lines. To mitigate this problem, we have only fit values that satisfy

A0=DHman
ppM 
 7. All of the data for 15N satisfy this criterion, while most do not for

14N. The straight lines fit to the data in 13b that satisfy this criterion are extended to

the limits of the plot for clarity, but only the lower values of C are fit. Values of the

slopes of these straight lines, V , are given in Tables 6, 7, 8 and 9. As expected,

because 14A0 is smaller by a factor of 1.403, [29] the overlap becomes a problem in

general at lower values of C for 14N. Notable in Fig. 13b is the fact that the lf and hf

Fig. 13 a Values of �plf
15A0=2 for the lf of 15 NH, open symbols, and for 15ND, closed symbols, at

temperatures 273 K (diamonds), 298 K (circles), and 340 K, (squares), for the same data as those in
Fig. 12. b shows values of �plf

14A0=3 (open symbols) and þphf
14A0=3 (closed symbols) for 14NH.

Unlike the plots in Fig. 12, these deviate from linearity as C increases because of overlap with adjacent
lines
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results are significantly different, especially at 273 K. This difference is expected if

there is an underlying impurity line, and, in fact, we show in ‘‘Appendix 3’’ that this

is the case. Figure 12b shows that the slopes of the lf and hf lines by the fitting

method differ by considerably less.

Figure 14 shows a direct comparison between the fitting method, squares, and the

two-point method, circles, for 14 NHR taken at 340 K. The two parameters are

placed on the same footing using Eq. (62). The values of hVman
dispM=V

man
ppMi are averages

over the lf- and hf-manifolds, and \B[ the average broadening over all three

lines. The multiple points are from different runs of the same sample to show the

reproducibility. The straight line is a fit to Eq. (54) yielding k = 0.968 and the

curved line is a quadratic to guide the eye through the circles.

5 Discussion

Finding values of Kex and Wdd from an experimental spectrum in the proton dark

zone relies on obtaining accurate values of the average Lorentzian line width of the

unresolved IHB manifolds, hDHL
ppMi, and the average value of the dispersion to

Fig. 14 Relative dispersion amplitude as derived from the two-point method, circles, and from fitting,
squares for 14 NHR at 340 K. hVman

disp =V
man
disp i is the average over the lf- and hf-manifolds, and B is the

average over all three lines. The multiple points are from different runs of the same sample to show the
reproducibility. The straight line is a fit to Eq. (62) yielding k = 0.968 and the curved line is a quadratic
to guide the eye through the circles
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absorption ratio, hVdispM=VppMi. Assumption 1 asserts that the former may be

obtained by extracting DHLðVoigtÞ
ppM by fitting the manifold to a Voigt. Assumption 2

states that the latter may be obtained from either a Voigt fit value of Vman
dispM=V

man
dispM

transformed by Eq. (49), or by measuring pM from the asymmetry of the spectrum

according to Eq. (60).

This paper reaffirms that DHLðVoigtÞ
ppM is equal to hDHL

ppMi to remarkable precision

using several sources of information. (1) Fitting the perturbation result in Fig. 1

yields errors within 2% for either HSE or DD despite the interference of the intra-

manifold dispersions. Thus, assumption 1 holds in the heart of the dark zone. (2)

Values of B
0
M ¼ dDHLðVoigtÞ

ppM =dC as C ! 0 agree with the values from Eqs. (36) and

(42) for HSE or DD, respectively. See the insets to Figs. 2 and 3. (3)

Experimentally, we find excellent agreement between the values of B
0
M derived

from 15 NH versus 15ND. For example, compare Fig. 9c, d at 273 K.

B
0
lf = 36.2 ± 0.6 G/M for 15 NH and 37.1 ± 0.7 G/M. For the hf manifold (not

shown in Fig. 9), the comparison is B
0
lf = 37.8 ± 0.6 G/M for 15NH and

37.2 ± 0.7 G/M. This agreement is fortuitous as shown by comparing the results

of the two isotopes at other temperatures in Table 7. Nevertheless, in view of the

fact that the manifold line widths must be corrected by up to 125% and 32% for

15NH and 15ND, respectively; this is a remarkable result that clearly demonstrates

the accuracy of determining Lorentzian line widths in IHB spectra. Assumption 1

rests on the fact that spectra undergoing HSE and/or DD remain good Voigts,

‘‘Appendix 2’’. Fitting unresolved manifolds of complicated spin modes must be

considered a phenomenological procedure, but one that is useful and accurate.

Assumption (2) is less accurate in the proton dark zone as evidenced by Figs. 5 and

6. For HSE, the error in the slope, (c), varies from 28 to 0% for Vj jC=ca = 0–1.3 from

the two-point method, while fitting yields errors from 33 to 5% over that same range.

For Vj jC=ca[ 1.3, the two-point method rapidly deteriorates, while fitting yields

results within 1–2% over the entire range. For DD, the error in the slope, (d), varies

from 32 to 20% for Vj jC=ca = 0–0.7 from the two-point method and rapidly

deteriorates at higher values of Vj jC=ca. Fitting yields errors from 37 to 0% for

Vj jC=ca = 0–1.3; above this fitting yields results within 5% at worst and near zero on

average, depending on how large a value of for Vj jC=ca is employed in the fit. From

[17], it appeared that the two-point method would be suitable for larger values of VC;

however, in practice, line overlap prevails.

Comparing the resulting rate constants in Tables 6, 7 and 8, we find generally good

agreement between the two-point method and fitting; however, some of this agreement

may be fortuitous because both methods show similar errors through the proton dark

zone. Referring to the particular case of Fig. 14, where the two-point method yields

results closer to a quadratic than a linear dependence, the result depends on the regions

selected to fit to a straight line. The final row of Table 9 shows that the final results are in

rather good agreement, but one needs to keep in mind that the quoted errors are random

and systematic errors and do not include any estimate of the error due to the range fit.

At our present state of knowledge, we cannot elaborate very much on the details of

the proton dark zone because we do not yet have a detailed theory for 13 lines like we

do for 2, 3, or 5 lines numerically [13], or 2 or 3 lines, analytically [5]; however, we

may use these latter results to guide our thinking. Figure 15 shows results for the

The Current State of Measuring Bimolecular Spin Exchange… 1435

123



experimental Gaussian line widths for the lf-manifold of 14NH R at 273 K, open

diamonds, and 340 K, closed diamonds. Compare the general behavior of these with

those of Figs. 3 and 4 where DHGðVoigtÞ
ppM decreases rapidly for HSE and increases

slightly before decreasing for DD, respectively. From Eq. (31), we know that the

proton lines within a manifold move toward the center equally for HSE and DD. This

contributes to a decrease in the second moment detected as a decrease in DHGðVoigtÞ
ppM . If

the height of the proton lines remained the same, thenDHGðVoigtÞ
ppM would decrease at the

same rate, but they do not remain the same. For HSE, the outer lines broaden the most,

decreasing the relative heights of the outer lines according to Eq. (15). This effect

lowers the value of the second moment calculated from r2 ¼
P

VppmMðHmMÞ2
. In

contrast, for DD, the outer lines broaden the least, increasing their relative heights

leading to an increase in r2. This increase is eventually overcome by the effect of the

collapsing proton structure, so one expects to observe an initial increase followed by a

decrease. For 2–5 lines, there is another effect in the case of HSE that accelerates the

decrease in DHGðVoigtÞ
ppM , namely that the outer lines actually lose intensity to the inner

lines and even eventually go into emission; that is to say that the intensities become

negative [5, 13]. This has a profound effect on the decrease in DHGðVoigtÞ
ppM that may

signal a similar behavior in 13 lines.

The presence of the intra-manifold dispersions may be detected as an increase

(HSE) or a decrease (DD) in the doubly integrated intensity (Fig. 7); however, in the

Fig. 15 Experimental Gaussian line widths for the lf-manifold of 14 NHR at 273 K, open diamonds, and
340 K, closed diamonds. Compare the general behavior of these with those of Figs. 3 and 4 where
DHGðVoigtÞ

ppM decreases rapidly for HSE and increases slightly before decreasing for DD, respectively
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present experiment this effect falls within the scatter of the data. Similarly, the

presence of the intra-manifold dispersion lead to rather large errors through the dark

zone (Figs. 5, 6).

An interesting result of the present work, shown in Fig. 12, is that the values of

Vdispllf=Vpplf for C ! 0 are different for protons and deuterons. This is an effect that

we have not seen in the past because this is the first time protonated vs. deuterated

nitroxides have been studied in the same experiment. Because Marsh [35], treating

the case without IHB, has shown that non-zero intercepts are expected this new

finding may offer interesting insights into the role of the proton or deuteron

interactions on the relaxation processes. He has predicted the difference between
14N and 15N.

6 Conclusions

By studying 14N and 15N, the latter protonated or deuterated, we conclude the

following:

1. The rate constants describing HSE and DD are in reasonable agreement for the

two isotopes, deuterated or protonated employing either the fitting and two-point

methods; however, generally smaller error bars are found with the fitting method.

Tables 6, 7, 8 and 9. These rate constant show dependences on T=g, similar to

those for per-deuterated 14N and 15N Tempone in 70 wt% aqueous glycerol [18].

2. Assumption 1, that the average Lorentzian line width is well approximated by the

Voigt Lorentzian line width is confirmed both experimentally (comparing 15 NH

and 15 ND) and theoretically from fits to spectra computed with perturbation

theory and from the C ! 0 behavior of spectra simulated from the exact Eq. (1).

3. An interesting difference in the behavior of the intercepts for protonated and

deuterated nitroxides as C ! 0 was discover experimentally that does not yet

have an explanation.

4. For experiments that are carried out with protonated nitroxides, the separation

of HSE and DD carries errors up to 10–30% for low concentrations and small

values of T=g depending on the range of concentrations used. In many cases,

this situation may be improved by deuteration and using higher concentrations;

however, in limited cases such as Refs. [28, 36], higher concentrations may not

be an option. If higher concentrations are employed, then only the fitting

method will be applicable. Failing to design an experiment that avoids low

concentrations with a nitroxide that is not cost-prohibitive to deuterate, one

might have to resort to finding procedures to correct the measured values of

hVman
dispM=V

man
dispMi such that they agree with simulated values of VdispM=VppM; i.e.,

correct the curves in the inset to Fig. 5 such that hVdispM=VppMi and

Vman
dispM=Vman

dispM coincide.
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The Current State of Measuring Bimolecular Spin Exchange… 1437

123



Appendix 1: Exaggerated Values of hVdispM=VppMi

Figure 16 shows thirteen Lorentzian absorptions (a) and inter-manifold dispersions

(b) of binomial relative intensities, light lines, and the sums, bold lines. (c) The sum

of the absorption and dispersion manifolds. On this scale, there appear to be 9 lines

because the outer 4 are not observable. Compare with Fig. 1, except the intra-

manifold dispersions are not shown and a greatly exaggerated value of

hVdispM=VppMi = 0.3 is employed to emphasize the asymmetry of the spectrum.

The lf- and hf-manifolds are spaced by the 15N hyperfine coupling constant,

Fig. 16 a Thirteen Lorentzian absorptions and b inter-manifold dispersions of binomial relative
intensities, light lines, and the sums, bold lines. c The sum of the absorption and dispersion manifolds. On
this scale, there appear to be 9 lines because the outer 4 are not observable
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A0 = 22.0 G; however, the central 12 G of each trace has been removed to

emphasize the structure; thus, the nitrogen spacing is about twice as large as it

appears. The intrinsic Lorentzian line widths for the two manifolds are

DHL
ppþ1 = 0.4680 G and DHL

pp�1 = 0.6521 G, respectively, and a = 0.26 G. The

absorption–dispersion admixtures (c) and (f) are asymmetric, reminiscent of line

shapes that are now familiar for nitroxides undergoing HSE; e.g., Figure 9a of Ref.

[23, #3822]. Of course, in this latter case, the IHB will have collapsed, so the

manifolds are effectively Lorentzian, in contrast with Fig. 16. The quantities

DXman
ppM , Yman0

maxM, and Yman0
minM are defined.

The resulting manifolds have Vman
disp =V

man
pp = 0.2675 (lf) and 0.2708 (lf), 11 and

10% smaller than VdispM=VppM , respectively. When transformed by Eq. (49),

hVman
disp =V

man
pp i = 0.300 for both manifolds.

Figure 17 shows the low-field line of the admixture, Fig. 1c, on an expanded

scale showing the resonance field, Habs
lf ; i.e., where the absorption crosses the

baseline (where the dispersion is maximum); and where the admixture crosses the

baseline, Hobs
lf . In this case, in which the lf-manifold is positive because HSE

dominates, Hobs
lf is up field from hH�1=2i; the opposite is true at hf, so the separation

between the two admixtures, Aobs, is less than between the resonance frequencies,

Aabs. For DD, the reverse occurs. See Fig. 11a of Ref. [11] for an experimental

example of an increasing Aobs as C increases.

Figure 18 shows values of Vman
disp =V

man
pp derived by the two methods as a function

of vM .

Fig. 17 The lf-manifold of Fig. 16 showing the resonance field, H�1=2 and where the admixture crosses
the baseline
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Appendix 2: IHB Spectra Remain Excellent Voigt Line Shapes Under
HSE or DD

Spectra were generated for HSE and DD with Eq. (1) and for C = 0 from Ref.

[23, #3822]. The input parameters are given in the caption to Fig. 16. The spectra

were fit with Eq. (44) and the differences between the fit and the spectra, the

residuals, were computed. Figure 19 shows the lf-manifold of spectra and the

resulting residuals for conditions near and including incipient resolution. The

C = 0 spectra were computed by holding the proton spacing constant at

a = 0.4 G and varying DHL
pp such that the range of v�1=2 overlapped that of

the HSE and DD results.

Figure 20 shows the maximum value of the residuals, Rmax, as a fraction of Vman
pplf .

This plot shows that for v�1=2 \ 2, the difference in the Voigt shape and the

spectrum is 1% or less; thus, for all three cases, HSE, DD, and C = 0, the spectra

are accurately modelled as Voigt shapes. For the hf-manifolds of all spectra, with

Fig. 18 Values of Vman
dispM=V

man
ppM from fitting, open circles, and from the two-point method, open squares

as functions of vM . The closed circles are obtained from the open circles by applying the correction
Eq. (49). For input values of hVdispM=VppMi ranging from 0 to 0.4, the fitting method yields the same
value, while the two-point method yields somewhat different values as shown by the scatter of the open
squares
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Fig. 19 Spectra for the lf-manifold only computed from Eq. (1) for a 15N nitroxide, A0 = 22 G with
hyperfine coupling to 12 equivalent protons, a = 0.4 G, with KexC=c = a 0.03 G, b 0.06 G, c 0.09 G; or
with WddC=c = d 0.0525 G, e 0.1575 G, f 0.2625 G. DHL

pplfð0Þ = 0.45 G. The spectra were fit with
Eq. (44) and the residuals computed. The smaller trace overlying each spectrum shows the residual. The
fit is shown only for a in order not to obscure the distortions in the other spectra that are evident near the
peaks of b–e. A practiced eye will also detect distortions in f
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DHL
ppMð0Þ = 0.69 G, Rmax=V

man
lf \ 0.004 for HSE, DD, and C = 0, all having

vlf \ 1.9 and showing no hint of incipient resolution.

One question is how well does the Voigt model IHB spectra; another, just as

important, is how well do the fit parameters compare with the known input

parameters. This can only be done for C = 0 spectra because we do not know the

input values except there. In Fig. 21 this question is addressed over the range of

v�1=2 in Fig. 20 and higher, where input and fit values of line widths of C = 0

spectra are displayed. The solid squares are input values of hDHL
ppMi and the open

squares, the fit values of DHLðVoigtÞ
ppM . The solid circles show input values of

DHGðVoigtÞ
ppM ¼ a

ffiffiffiffiffiffi

aN
p

, from Eq. (8), and the open squares, the fit values of DHGðVoigtÞ
ppM .

The vertical arrows indicate values of vlf corresponding to the spectra in Fig. 19a, b,

respectively. The inset shows the spectrum and residuals for the vM = 2.85;

compare with Fig. 19a, b, respectively. It is clear that excellent accuracy is obtained

in support of Assumption 1, even for spectra that are clearly partially resolved. This

interesting fact holds for spectra showing considerably more resolution that in the

inset; however, detailed investigation is outside the scope of this paper.

Fig. 20 Maximum value of the residuals, Rmax, as a fraction of Vman
�1=2 from fits to Eq. (44). Diamonds,

DD; squares, HSE; circles C = 0. Open symbols, a = 0.2 G; closed, a = 0.4 G. The vertical arrows
indicate values of v�1=2 corresponding to spectra in Fig. 19a–f, respectively
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Appendix 3: The Reason that the p-Parameter is in Error for the Low-
Field Line of 14 NH at 273 K

Figure 22 shows values of �plfA0=3 and þphfA0=3 for 14 NH at 273 K taken from

Fig. 11b on a larger scale. We observe that, while the hf results are reasonably

linear, the lf results are not.

Figure 23 shows a spectrum at 273 K together with the residual, which shows an

impurity line overlapping the main spectrum in the vicinity of the measurement of

pðlfÞ. The impurity does not appear to amount to much on this scale, but because the

asymmetry is so small, it makes a large difference in the p-parameter. Clearly there

is no significant extraneous line for the high-field line so it’s not affected.

Note also that for the cf and hf-manifolds where interference due to extraneous

lines is not severe, the line shape is an excellent Voigt as shown by the small

residuals.

Fig. 21 Input and fit values of line widths of C = 0 spectra. Solid squares, input values of hDHL
ppMi and

open squares, fit values of DHLðVoigtÞ
ppM . Solid circles, input values of DHGðVoigtÞ

ppM ¼ a
ffiffiffiffiffiffi

aN
p

, from Eq. (8), and

open squares, fit values of DHGðVoigtÞ
ppM . The vertical arrows indicate values of v�1=2 corresponding to two of

the spectra in Fig. 19a, b, respectively. The inset shows the spectrum and residuals for the vM = 2.85;
compare with Fig. 19a, b, respectively
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Fig. 22 Values of �pðlfÞA0=3 (squares) and pðhfÞA0=3 (circles) for 14NH at 273 K shown here on a
larger scale than in Fig. 11b. The straight lines are linear fits, showing that the hf results are reasonably
linear; however, the lf results are not

Fig. 23 EPR spectrum of 10-mM 14 NH at 273 K together with the residual where an impurity line is
evident in the lf-manifold
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