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Abstract The behavior of electron paramagnetic resonance spectra due to 15N and
14N nitroxide free radicals undergoing spin exchange in liquids at frequencies xex

that are high, of the same order of magnitude as the nitrogen hyperfine coupling

constant A0, is investigated. The well-known features are reconfirmed: (1) at low

values of xex where the lines broaden, shift toward the center of the spectrum, and

change shape due to the introduction of a resonance of the form of a dispersion

component; (2) at values of xex comparable to A0, where the lines merge into one;

and (3) at values much larger than A0, where the merged line narrows. It is found

that each line of a spectrum may be decomposed into an admixture of a single

absorption and a single dispersion component of Lorentzian shape. These two- or

three-line absorption–dispersion admixtures, for 15N and 14N, respectively, retain

their individual identities even after the spectrum has merged and has begun to

narrow. For both isotopes, the average broadening and integrated intensities are

equal to the predictions of perturbation theory although, in the case of 14N, the outer

lines broaden faster than the central line and intensity moves from the outer lines to

the central line. In fact, the outer line intensity becomes zero and then negative at

higher values of xex which is compensated by the central line becoming more

intense than the overall integrated intensity. For both isotopes, the dispersion

components and the line shifts depart from the perturbation predictions. The results

are presented in terms of measurable quantities normalized to A0 so that they may be

applied to any two- or three-line spectrum.
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1 Introduction

This is a continuation of a series of articles started with the ultimate goal to measure

translational diffusion of nitroxide free radicals (nitroxides) in supramolecular

structures in solution exploiting electron paramagnetic resonance (EPR) spectral

changes under the influence of Heisenberg spin exchange (HSE) [1]. EPR spectra of

nitroxides in low-viscosity liquids may be simple two-, three-, or five-line spectra in

the absence of further hyperfine structure. Call this Case 1. For Case 2, in which

hyperfine structure due to protons or deuterons is significant, the spectra may be

complicated, with hundreds of lines [2]. In the absence of HSE, denote the line

spacing due to nitrogen hyperfine coupling by A0 and average spacing due to the

protons or deuterons, by \a0 [ . We restrict our discussion to cases in which the

HSE is strong which means that during the brief time that two nitroxides are in

intimate contact, sc, under the influence of an average exchange integral, Jj j, that the
product is much larger than unity; i.e., Jj jsc � 1. Strong exchange has been found

to be fulfilled for nitroxides in most cases [3]

For Case 1, spectral changes due to HSE at increasing spin-exchange frequency,

xex, are as follows: for xex=c � A0, where c is the gyromagnetic ratio of the

electron, the lines (a) broaden, (b) shift toward the center of the spectrum, and

(c) change shape due to the introduction of HSE-induced dispersion. For

xex=c � A0, the lines (d) collapse to a single line; and for xex=c � A0, (e) the

single line narrows [3].

For Case 2, for xex=c � \a0 [ , the lines shift to the center of each proton

(deuteron) hyperfine multiplet as the multiplets shift to the center of the spectrum,

for xex=c � \a0 [ , the multiplets merge into inhomogeneously broadened lines;

and for xex=c � \a0 [ , the multiplets narrow at which point, Case 2 is identical

to Case 1. For nitroxides, \a0 [ is typically 0.1–0.4 G, while A0 is 14–24 G [1];

thus, it is easy to find experimental conditions that fulfill both xex=c� \a0 [ and

xex=c � A0. For xex larger than this, all nitroxides may be treated as Case 1; thus,

we restrict this presentation to Case 1.

The spin-exchange frequency is often written in terms of the spin-exchange rate

constant, Kex, as xex ¼ c � Kex [3], where c is the concentration in mol/L. Thus, xex

may be varied experimentally by varying the nitroxide concentration. Thus, a limit

of xex ! 0 may be achieved by taking the limit c ! 0. Therefore, when we speak

of the absence of HSE, we mean either xex ! 0 or c ! 0. We consider only the

case in which the microwave power is small enough to avoid saturation. The entire

development is for first-derivative EPR spectra.

The generally accepted expression for the EPR spectrum is given by the

derivative of the real part of Eq. (1) [3, 4]

YðHÞ ¼ Itotal

p
GðHÞ

½1� ðxex=cÞGðHÞ� ; ð1Þ

where H is the magnetic field, Itotal the integrated intensity, proportional to the

number of spins, and GðHÞ is given by:
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GðHÞ ¼
X

j

qj
iðH � HjÞ þ c�1ðxex þ T�1

2j Þ
; ð2Þ

where the sum is over j which denotes the jth Lorentzian resonance line of

degeneracy qj at resonance field Hj with spin–spin relaxation time T2j. Equation (1)

is quite general [3], applicable to any number of lines; in this work, the sum is only

over two (15N) or three (14N) lines. The peak-to-peak line width of line j in the

absence of HSE is DHppj 0ð Þ ¼ 2= c
ffiffiffi
3

p
T2j

� �
. For those readers who are familiar with

a more phenomenological approach in which coupled equations are written in terms

of relaxation times, see, for example, section 2.4 of Ref. [3] where an equation

equivalent to Eq. (1) is derived.

Equation (1) does not include HSE that occurs during re-encounter collisions

while two nitroxides reside within a cage [5].

For convenience, label the low-field line j ¼ þ1 and high-field j ¼ �1 for both

isotopes and the center line for 14N j ¼ 0.

The main purpose of this work is to carefully investigate intermediate spin

exchange, xex=c � A0, for Case 1 and to hypothesize that Eq. (1) is equivalent to a

sum over lines that are superpositions of absorption and dispersion Lorentzian line

shapes.

Many of the conclusions that we reach here have been reported previously for

two- [6], three- [7, 8], and five-line [9] spectra, but with considerably smaller values

of xex=cA0. We find some rather unusual behavior of the line shapes as xex

increases through the intermediate spin-exchange region into the spin-exchange

narrowing region.

2 Theory

2.1 Perturbation Theory in the Slow-Exchange Limit

The monograph [3] treated Eq. (1) with perturbation theory which predicted that at

xex=c � A0, slow exchange, each line consisted of a superposition of an absorption

and a dispersion function as follows [7]:

Y
pert
j ¼ V

pert
ppj xexð Þ � Abspertj þ V

pert
dispjðxexÞ � Disppertj ; ð3Þ

where the superscript pert denotes the result from perturbation theory. The first-

derivative Lorentzian absorption function of unit peak-to-peak intensity is given by

[7]:

Abs
pert
j ¼

�8nj

3þ n2j

� �2
; ð4Þ

and the first-derivative Lorentzian dispersion function of unit maximum intensity,

by [7]:
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Disp
pert
j ¼

3 3� n2j

� �

3þ n2j

� �2
; ð5Þ

with

nj ¼ 2½H � H
pert
j ðxexÞ�=DHpert

ppj ðxexÞ; ð6Þ

where DHpert
ppj ðxexÞ is the peak-to-peak line width [7]. The dependence of the

functions and parameters in Eq. (3) on H and xex is suppressed, except when they

are needed for clarity. Thus, the slow-exchange spectrum consists of the sum [7]:

Ypert ¼
X

j

V
pert
ppj � Abspertj þ V

pert
dispj � Disp

pert
j

� �
; ð7Þ

Line broadening due to HSE is defined by:

Bj � DHppjðxexÞ � DHppjð0Þ; ð8Þ

Perturbation theory shows that the broadening is independent of j given by the

following [7]:

B
pert
j ¼ 2

3

2ffiffiffi
3

p xex=c for 14N, ð9aÞ

or

B
pert
j ¼ 1

2

2ffiffiffi
3

p xex =c for 15N, ð9bÞ

The numerical factors 2/3 or 1/2 are the values of 1� qj, the fraction of spins with

j0 6¼ j [3].

For a Lorentzian line, the integrated intensity is given by [7]:

Ij ¼
pffiffiffi
3

p DHppj

� �2
Vppj; ð10Þ

In the slow-exchange limit, Ij is independent of j; all three (two) lines have the same

integrated intensity; I
pert
j ¼ Itotal=3 or I

pert
j ¼ Itotal=2, respectively. Therefore [7],

V
pert
ppj ¼

ffiffiffi
3

p
Itotal=3

p 4xex

3
ffiffi
3

p
c
þ DHppð0Þj

h i2 For 14N, ð11aÞ

V
pert
ppj ¼

ffiffiffi
3

p
Itotal=2

p xexffiffi
3

p
c
þ DHpp 0ð Þj

h i2 For 15N, ð11bÞ

For both isotopes [7],

V
pert
dispj ¼ j

4

3
ffiffiffi
3

p xex

cA0

V
pert
ppj ; ð12Þ

HSE leads to resonance field shifts of the outer lines toward the center as follows:
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dHj � j½HðxexÞj � Hð0Þj� 	 0; ð13Þ

These shifts are conveniently measured in terms of the differences in resonance

fields of adjacent absorption lines, AabsðxexÞ [6]:

AabsðxexÞ ¼ A0 �
1

2
dHþ1 � dH�1ð Þ for 14N, ð14aÞ

AabsðxexÞ ¼ A0 � dHþ1 � dH�1ð Þ for 15N, ð14bÞ
For slow exchange [6],

A
pert
abs ðxexÞ
A0

¼ 1� 1

6
xex=A0cð Þ2 for 14N, ð15aÞ

A
pert
abs ðxexÞ
A0

¼ 1� 1

2
xex=A0cð Þ2 for 15N, ð15bÞ

To simplify the presentation, we treat the case that the three (two) lines are of equal

width in the absence of HSE; i.e., DHppjð0Þ is independent of j; in this case, Vppj and

DHppjðxexÞ are symmetric about the spectrum center and the line shifts and the

dispersion maxima are anti-symmetric: dHþ1 ¼ �dH�1 	 0 and

Vdispþ1ðxexÞ ¼ �Vdisp�1ðxexÞ	 0. For simplicity, we refer to either V
pert
ppj ðxexÞ or

V
pert
dispjðxexÞ as the height of the corresponding component.

Therefore, in the slow-exchange limit, the spectrum is given by three (two) lines

with spacing between adjacent lines given by Eqs. (15a, 15b) having equal

integrated intensities, equal line broadening, with heights given by Eqs. (11a, 11b)

and (12), respectively.

It is worthwhile to reiterate that Dispj is introduced into the absorption spectrum

because of HSE and is detected as the out-of-phase component relative to the

microwave field. We introduced the term ‘‘spin exchange-induced dispersion’’ [7],

because its mathematical form is the same as the in-phase component of a

Lorentzian absorption line. A spectrometer perfectly tuned to display only the

absorption spectrum would give spectra shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9

below. Often a small amount of the spectrum detected from the in-phase component

is also present, a component that we have called instrumental dispersion. This

component does not absorb energy, and unlike Dispj, instrumental dispersion has

the same sign for all three lines.

2.2 Intermediate Spin Exchange Case 1

Our hypothesis is that Eq. (1) is of the same form as Eq. (7), except that the

variables VppjðxexÞ, HjðxexÞ, DHppjðxexÞ, and VdispjðxexÞ are not restricted to their

perturbation values. Therefore, the spectrum is given by

Y ¼
X

j

VppjðxexÞ � Absj þ VdispjðxexÞ � Dispj
� �

; ð16Þ
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with the same definitions Eqs. (4–6) except that the superscripts, pert, are removed.

Of course, in the slow-exchange limit, Eq. (16) must reduce to Eq. (7). We justify

our hypothesis by fitting Eq. (16) to Eq. (1).

j = −1j = +1

Aabs

Vpp −1

ΔHpp −1

Vdisp +1

Vdisp −1

x2

a

b

c

Fig. 1 a Solid line spectrum from Eq. (1); dashed line from perturbation theory, Eq. (16) for
xex=A0c = 0.463. The maximum difference in the spectrum and the perturbation results is 9% of the
maximum of the spectrum. b Solid line the absorption components as found from the fit of Eq. (16) to the
spectrum in a; dashed line the perturbation results. c Dispersion components, solid line fit of Eq. (16) to
the spectrum in part (a); dashed line the perturbation results. Fit parameters of Eq. (16) are indicated. The
92 is the relative scale of the ordinate applicable to Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9
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3 Methods

Equation (1) was computed using KaleidaGraph (2457 Perkiomen Ave, Reading,

PA 19606) in double precision, which is accurate to 16 digits. Non-linear least-

squares fits (fits) of Eq. (16) to spectra simulated by Eq. (1) were performed with

the Levenberg–Marquardt algorithm in KaleidaGraph which finds the smallest value

of the sum of the squared differences (v2) between the input data and the fit

function. The algorithm was used without supplying expressions for the partial

derivatives of the fit function with respect to the fit parameters. In this mode, the

program finds numerical values of these derivatives beginning with first estimates of

x2.7

a

b

c

Fig. 2 Spectrum and various components as described in the caption to Fig. 1 for xex=A0c = 0.590
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the parameters. The algorithm is accurate, efficient, and rapid provided that these

estimates are reasonably close to the final values [10]. The values of the best-fit

parameters are output with error estimates of the variables and v2. The program has

a convenient feature that places the differences in the input points and the fit into a

data window allowing the residuals to be easily plotted.

The bulk of the spectra were simulated with typical values [6] of T�1
2j = 0.2 G

and A0 = 22 G for 15N and to maintain a proper relationship with the known

nuclear magnetic dipole moments [6], A0 = 22/1.403 = 15.681 G for 14N. All of

the results are presented normalized to A0; thus, they are available for any value of

A0. We began by simulating the spectra with 4096 points because we collect that

many points experimentally, to be able to display residuals of the fits as high-

resolution line graphs, and to accurately find line widths of spectra when they are

x2.7

a

b

c

Fig. 3 Spectrum and various components as described in the caption to Fig. 1 for xex=A0c = 0.709
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narrowed to one line. This many points is clearly an exaggeration for most purposes

and may be reduced to as few as 26 with the same quality fits and identical results.

To emphasize the details in the central parts of the spectra, Figs. 1, 2, 3, 4, 5, 6, 7, 8

and 9, are presented with 100-G magnetic field sweeps, not large enough to view the

return to baseline for larger values of xex. In fact, the fits and the parameters were

verified to be independent of the sweep width by varying this parameter from 36 to

500 G.

x 10 14

a

b

c

d

Fig. 4 Spectrum and various components as described in the caption to Fig. 1 for xex=A0c = 0.992. The
absorption components, b appear deceptively small here because the scale of the ordinate is small and
because the line width is large. The integrated intensity of the absorption components is the same in
Figs. 1, 2, 3, 4 and 5. The difference between AabsðxexÞ and A

pert
abs ðxexÞ, b is rather small until xex=A0c

approaches unity where it becomes more pronounced. The large difference in the exact and the
perturbation results is in the dispersion component. d The residuals of the fit to Eq. (16) multiplied by
1014
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All of the fits of Eq. (16) to Eq. (1) presented in this work resulted in a maximum

discrepancy of less than 1 9 10-16, the stated precision of KaleidaGraph in double

precision. Therefore, all of the fits are limited only by the precision of the program.

To avoid repetitive description of ‘‘fits limited only by the accuracy of the computer

program’’, we searched for a short, properly descriptive adjective and settled on

‘‘perfect’’, obviously not in the literal meaning of the adjective. The estimated errors

in the fit parameters were less than those given in Table 1, showing that the

parameters are determined with extraordinary precision. We call two parameters

‘‘identical’’ if they are within the limits in Table 1. We say that a constant is

a

b

c

x2.5

Fig. 5 Spectrum and components given in Fig. 4 except that c shows the sum of the two dispersion
components and the scale has been increased by a factor of 2.5. This shows that a large fraction of the
observed spectrum is provided by the dispersion components that, when summed, have the appearance of
a single absorption line. Nevertheless, from Eq. (5), the summed dispersion lines have an integrated
intensity of zero. The integrated intensity of the spectrum (a), is equal to that of the two absorption lines
in b
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‘‘exact’’, if it is to within ±1 in the 16th digit. Our intention, here, is not to provide

ridiculously accurate results, but rather to make the case that Eqs. (1) and (16) are

the same within the accuracy of the computer program. It is rather remarkable that

the parameters can be recovered to accuracies better than Table 1, because the

a

b

c

x5

Fig. 6 Spectrum and various components of an 14N nitroxide for xex=A0c ¼ 0:649. The significance of
the lines is described in the caption to Fig. 1; however, A0 is the spacing between adjacent lines.
Perturbation results are not presented for the individual components to simplify Figs. 6, 7, 8 and 9. The
dramatic differences in the heights of the absorption components show that they are very different than
their perturbation counterparts, where all three lines are of equal height and line width
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functions in Eq. (16) are not orthogonal even in the slow-exchange limit and not

even remotely so for xex=c � A0.

To fit Eq. (16) to Eq. (1) for 15N, there are potentially eight variables; however,

because of the symmetry of Vppj and DHppjðxexÞ and the anti-symmetry of Vdispj and

dHj, only four are independent. For 14N, there are potentially 12 variables, but

because of the same symmetry arguments and the facts that the center line is neither

shifted nor has a dispersion component [3, 7], the number of independent variables

is reduced to 6. Preliminary work allowed all parameters to vary freely showing that

Vppþ1ðxexÞ ¼ Vpp�1ðxexÞ, Bþ1 ¼ B�1, Vdispþ1ðxexÞ ¼ �Vdisp�1ðxexÞ and dHþ1 ¼
�dH�1 to 16 digits as expected. The bulk of the work used these symmetry

properties to reduce the number of fit variables and to simplify the tables.

a

b

c

x5

Fig. 7 Spectrum and various components of an 14N nitroxide for xex=A0c ¼ 0:828
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4 Results

4.1 15N Nitroxides

Figures for slow exchange are not presented because these have been published and

are known to adhere to the perturbation results [6–8]. The figures are all presented

with a 100-G sweep with the magnetic field increasing from left to right. All of the

spectra were simulated with the same arbitrary value of Itotal so that the spectrum and

component heights maintain their correct relative values throughout the paper. For

clarity, the relative scales of the ordinates in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 are adjusted

as indicated in the upper right-hand corner of the figures. Note that these relative

a

b

c

x5

Fig. 8 Spectrum and various components of an 14N nitroxide for xex=A0c ¼ 0:994
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ΔHpp
narrow ω ex( )

x15

x15

x1

x15

x15

a

b

c

x1014

x2.7

d

Fig. 9 a–c Spectrum and various components of an 14N nitroxide for xex=A0c ¼ 1:39. d The difference
in the sum of the components and the spectrum multiplied by 1014. The residuals here appear to be larger
than those for 15N, Fig. 4b; however, the scale of this spectrum is 2.7 times larger. The dispersion and the
two outer absorption components are too small to be perceived on the same scale as the spectrum; so, they
are amplified by a factor of 15 revealing the fact that the two outer absorption components are negative
and, thus, have negative integrated intensities. Nevertheless, the sum of the intensities of the central line,
I0=Itotal = 1.30620, and the two outer lines, 2I
1=Itotal = -0.30620, add to exactly unity
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heights would correspond to constant-concentration experiments in which xex were

varied by varying the temperature and/or the viscosity. For a constant-temperature

experiment, the heights would be multiplied by a factor proportional to xex.

The solid line in the first trace of Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 is computed from

Eq. (1).

Figures 1a, 2, 3 and 4a show representative spectra for 15N (solid lines) given by

Eq. (1) at increasing values of xex=A0c = 0.463, 0.590, 0.709, and 0.992,

respectively. The dashed lines are the perturbation results, Eq. (7). The maximum

difference in the spectrum and perturbation result in Fig. 1a is 9.4% of the

maximum of the spectrum. This discrepancy becomes more severe as xex=A0c
increases.

Figures 1b, 2, 3 and 4b show the absorption components derived from fits of

Eq. 16 to Eq. (1) and Figs. 1c, 2, 3 and 4c, the dispersion components. In Fig. 1b, c,

the parameters DHpp�1ðxexÞ, Aabs, Vpp�1, and Vdisp
1 are indicated. The resonance

fields are where the absorption components cross the baseline, or where the

dispersion components reach their extremum values.

As xex=A0c increases, there is only a slight difference in the correct and

perturbation values of the resonance fields, Figs. 1b, 2 and 3b, until near the point

where the two-line pattern collapses completely, Fig. 4b. Values of Vpp
1 and

DHpp
1 of the correct spectra and the perturbation components are identical for all

values of xex. For the dispersion components, significant differences in the values of

Vdisp
1 and V
pert
disp
1 are observed already in Fig. 1c becoming more significant until

Disp
1 dominates the spectrum in Fig. 4. Figure 4, at a relative scale = 1, is

deceptive because of this dominance. The absorption components appear to be

insignificant when, in fact, their integrated intensities are identical to those in

Figs. 1, 2 and 3. Figure 4d displays the difference in the sum of the components and

the spectrum multiplied by 1014. The maximum value of the residuals is

3.6 9 10-17, less than the stated accuracy of KaleidaGraph.

It is instructive to present the results in Fig. 4 as Fig. 5 where, in (c), instead of

the separate dispersion components, we plot the sum of the two. Figure 5 is plotted

on a scale 2.5 times larger than that of Fig. 4; thus, the two rather dominant

dispersion lines now have the appearance of a much smaller absorption line that,

nevertheless, provides a major portion of the spectrum. Note that despite the

appearance of part c, it contributes nothing to the integrated intensity, as shown by

Eq. (5) where the even function, integrated twice, gives zero.

We have managed to find perfect fits only up to xex=A0c = 0.99908 and it is easy

to appreciate why from Fig. 4. As the dispersion lines move closer together and

grow larger, a very minor error in providing the first estimate in either the position

or dispersion maximum value results in an unstable minimum in parameter space.

Table 1 Maximum estimated errors in the variables

dHj Vpp
1 Vpp0 DHpp
1 DHpp0 
Vdisp
1

14N 4 9 10-13 6 9 10-18 1 9 10-17 2 9 10-13 2 9 10-15 3 9 10-17

15N 4 9 10-15 4 9 10-18 – 3 9 10-15 – 1 9 10-16
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Indeed, at zero spacing, 
Vdisp
1 could be any arbitrary value because the two

would cancel. Providing first estimates is rather easy up to approximately

xex=A0c = 0.9; above this, more patience and perseverance is needed. One can

get splendid fits to the spectra but not perfect fits; v2 * 10-12 rather than

v2 * 10-32 with identical parameters but these are not included in the present

paper.

Table 2 tabulates the fitted parameters for 15N and Table 3 presents the

perturbation results as well as the important parameter 
Vdisp
1=Vpp
1

[1, 6–8, 11–13]. All entries given as fractions In Tables 2, 3, 4 and 5 are exact to

within ±1 in the least-significant of 16 digits. Comparing Tables 2 and 3 highlights

the fact that values of Vpp
1 and DHpp
1 are identical for the absorption components

and their perturbation counterparts, but only to five significant figures; in fact, the

largest difference is 5 9 10-16. Only 
Vdisp
1=Vpp
1 and Aabs=A0 depart from the

perturbation predictions. We have failed in our efforts to find expressions for


Vdisp
1=Vpp
1 or Aabs=A0; however, it is very interesting that the product of the

two is very simple as follows:

AabsðxexÞ
A0

Vdisp
1

Vpp
1

¼ 4

3
ffiffiffi
3

p xex

cA0

; ð17Þ

Table 2 Fit parameters 15N spectra

xex=cA0 B
1=A0
a Vpp
1=Itotal 
Vdisp
1=Itotal

b Aabs=A0

0.15746 0.090909 0.17400 0.021358 0.98753

0.31492 0.18182 0.048379 0.012357 0.94912

0.46293 0.26727 0.023191 0.0093235 0.88639

0.59047 0.34091 0.014490 0.0081609 0.80706

0.70857 0.40909 0.010163 0.0078562 0.70564

0.78730 0.45455 0.0082737 0.0081326 0.61658
ffiffiffi
3

p
=2 1/2 0.0068659 0.0091546 1/2

0.90460 0.52227 0.0063038 0.010298 0.42626

0.94475 0.54545 0.0057891 0.012845 0.32778

0.96208 0.55545 0.0055863 0.015167 0.27278

0.97703 0.56409 0.0054197 0.019130 0.21308

0.98569 0.56909 0.0053266 0.023980 0.16854

0.99199 0.57273 0.0052603 0.031806 0.12629

0.99593 0.57500 0.0052196 0.044395 0.090139

0.99672 0.57545 0.0052115 0.049384 0.080970

0.99750 0.57591 0.0052034 0.056585 0.070613

0.99829 0.57636 0.0051954 0.068322 0.058437

0.99908 0.57682 0.0051873 0.092947 0.042923

Dependences on xex=cA0 are suppressed in the headings. All entries given as fractions are exact to within

±1 in the least-significant of 16 digits
a Identical to B

pert

1 =A0, Eq. (9a)

b Identical to 
V
pert
disp
1=Itotal, Eq. (11b)
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Forming this product from the data in Tables 2 and 3, shows that the two sides of

Eq. (17) are equal to within 2 9 10-7–5 9 10-5; however, this is because of round-

off error due to using only five significant figures. With data of full precision, the

two sides are the same to within 6 9 10-15.

Table 2 shows that, the case of 15N, Eq. (1) yields simple results for

xex=A0c ¼
ffiffiffi
3

p
=2, where B
1 ¼ A0=2 and Aabs ¼ A0=2, or B
1 ¼ Aabs. Table 4

shows that the perturbation results are also simple at xex=A0c ¼
ffiffiffi
3

p
=2 where

A
pert
abs ¼ 5A0=8. Furthermore, we see that 
Vdisp
1=Vpp
1 = 2 
V

pert
disp
1=V

pert
pp
1.

4.2 14N Nitroxides

Figures 6a, 7, 8 and 9a show representative results for 14N at increasing values of

xex=A0c = 0.649, 0.828, 0.994, and 1.39, respectively. The significance of the lines

is described in the caption to Fig. 1; however, A0 is the spacing between adjacent

lines, not the outer lines. For clarity, the perturbation results are not presented for

the components, only for the spectra. As xex=A0c increases, the components

broaden and move toward the center, while the spectra coalesce into one line and

narrow. The dramatic differences in the heights of the absorption components show

Table 3 Perturbation values 15N spectra and values of 
Vdisp
1=Vpp
1

xex=cA0 B
pert

1 =A0 
V

pert
disp
1=V

pert
pp
1

a 
Vdisp
1=Vpp
1 A
pert
abs =A0

b

0.15746 0.090909 0.12121 0.12274 0.98760

0.31492 0.18182 0.24242 0.25542 0.95041

0.46293 0.26727 0.35636 0.40204 0.89285

0.59047 0.34091 0.45455 0.56321 0.82567

0.70857 0.40909 0.54545 0.77299 0.74897

0.78730 0.45455 0.60606 0.98295 0.69008
ffiffiffi
3

p
=2 1/2 2/3 4/3 5/8

0.90460 0.52227 0.69636 1.6337 0.59085

0.94475 0.54545 0.72727 2.2188 0.55372

0.96208 0.55545 0.74061 2.7150 0.53721

0.97703 0.56409 0.75212 3.5297 0.52270

0.98569 0.56909 0.75879 4.5021 0.51420

0.99199 0.57273 0.76364 6.0465 0.50798

0.99593 0.57500 0.76667 8.5054 0.50406

0.99672 0.57545 0.76727 9.4760 0.50328

0.99750 0.57591 0.76788 10.875 0.50249

0.99829 0.57636 0.76848 13.151 0.50171

0.99908 0.57682 0.76909 17.918 0.50092

Dependences on xex=cA0 are suppressed in the headings. All entries given as fractions are exact to within

±1 in the least-significant of 16 digits
b Equations (11b) and (12)
c Equation (15b)

EPR Line Shifts and Line Shape Changes Due to Spin… 191

123



that they are very different than their perturbation counterparts, where all three lines

are of equal height and line width.

For xex=A0c = 1.39, Fig. 9, both the outer absorption lines and the dispersion

lines are barely perceptible, so they are amplified by a factor of 15 relative to the

spectrum and the central absorption component. Figure 9d shows the residuals of

the fit amplified by 1014. The maximum value of the residue is 2.5 9 10-17, similar

to that in Fig. 4d. Figure 9b shows a feature that is extremely interesting and, to our

knowledge, unprecedented: Vpp
1 \ 0. As in the case of 15N, the sum of the two

dispersion components (not shown) appears to be a smaller single line with the

appearance of an absorption line; however, for 14N, it contributes much less to the

spectrum.

We have managed to find perfect fits up to xex=A0c = 1.9882, about twice the

upper limit of 0.99908 for 15N. For convenience, call these upper limits

xex=cA0ð Þupper; however, we do not mean to imply that fits above these limits are

not possible.

Table 4 tabulates the fitted parameters for 14N and Table 5 presents the

perturbation results, the integrated intensities, and the important parameter

Table 4 Fit parameters 14N spectra

xex=cA0 B
1=A0 B0=A0 Vpp
1=Itotal Vpp0=Itotal 
Vdisp
1=Itotal Aabs=A0

0.16568 0.12774 0.12715 0.11461 0.11881 0.014822 0.99541

0.33137 0.25670 0.25186 0.030629 0.035613 0.0082785 0.98153

0.49705 0.38835 0.37118 0.013077 0.018764 0.0057557 0.95798

0.64952 0.51364 0.47276 0.0068868 0.013460 0.0044905 0.92724

0.66273 0.52474 0.48103 0.0065294 0.013197 0.0044052 0.92416

0.82842 0.66912 0.57490 0.0032585 0.011494 0.0035148 0.87947

0.99410 0.82686 0.64204 0.0012666 0.012170 0.0027721 0.82409

2=
ffiffiffi
3

p
1.0000 2/3 3 9 10-16 0.015171 0.0019904 0.76376

1.1598 1.0059 0.66664 -3 9 10-5 0.015306 0.0019636 0.76184

1.3255 1.2107 0.63959 -0.000596 0.020631 0.0010980 0.70422

1.3917 1.2980 0.61797 -0.000626 0.022984 0.00081433 0.68557

1.4083 1.3202 0.61202 -0.000622 0.023573 0.00075275 0.68137

1.4911 1.4315 0.58076 -0.000561 0.026483 0.00050334 0.66313

3/2 5
ffiffiffi
3

p
=6

ffiffiffi
3

p
=3 -0.000552 0.026791 0.00048199 0.66144

1.5740 1.5429 0.54911 -0.000472 0.029366 0.00033663 0.64893

1.6568 1.6537 0.51890 -0.000386 0.032278 0.00022863 0.63789

1.6983 1.7087 0.50461 -0.000347 0.033761 0.00018994 0.63331

1.7397 1.7633 0.49091 -0.000312 0.035268 0.00015212 0.62925

1.8225 1.8718 0.46532 -0.000253 0.038366 0.00010768 0.62238

1.9054 1.9791 0.44204 -0.000205 0.041589 7.7971e-05 0.61685

1.9882 2.0853 0.42089 -0.000168 0.044944 5.7655e-05 0.61233

Dependences on xex=cA0 are suppressed in the headings. All entries given as fractions are exact to within

±1 in the least-significant of 16 digits
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Vdisp
1=Vpp
1 [1, 6–8, 11–13]. Here, the results are far more interesting than for
15N, because there are differences between the exact and perturbation results for

every parameter. We have not been able to find any simple relationships between

the exact and perturbation results similar to that in Eq. (17).

Tables 4 and 5 show that, in the case of 14N, Eq. (1) yields simple results for two

values of xex=A0c.
At xex=A0c ¼ 2=

ffiffiffi
3

p
,

1. B
1 ¼ A0 and B
1 ¼ 2A0=3, its maximum value, while B
pert
j ¼ 8A0=9.

2. I
1=Itotal ¼ 0, above which it is negative, and

3. A
pert
abs ¼ 7A0=9 while Aabs ¼ 0:76376A0.

At xex=A0c ¼ 3=2,

1. B
1 ¼ 5
ffiffiffi
3

p
=6

� �
A0 and B0 ¼

ffiffiffi
3

p
=3

� �
A0, while B

pert
j ¼ 5A0=8.

Table 5 Perturbation values 14N spectra, integrated intensities, and values of 
Vdisp
1=Vpp
1

xex=cA0 Bpert=A0
a I
1=Itotal I0=Itotal V

pert
disp
1=V

pert
pp
1

b Vdisp
1=Vpp
1 A
pert
abs =A0

b

0.16568 0.12754 0.33024 0.33953 0.12754 0.12933 0.99542

0.33137 0.25509 0.32035 0.35930 0.25509 0.27029 0.98170

0.49705 0.38263 0.30164 0.39672 0.38263 0.44012 0.95882

0.64952 0.50000 0.27295 0.45411 0.50000 0.65204 0.92969

0.66273 0.51017 0.26977 0.46046 0.51017 0.67467 0.92680

0.82842 0.63771 0.21633 0.56733 0.63771 1.0786 0.88562

0.99410 0.76526 0.12736 0.74529 0.76526 2.1887 0.83529

2=
ffiffiffi
3

p
8/9 0.00000c 1.0000 8/9 1d 7/9

1.1598 0.89280 -0.00440 1.0088 0.89280 -65.998 0.77582

1.3255 1.0203 -0.12698 1.2540 1.0203 -1.8435 0.70719

1.3917 1.0714 -0.15310 1.3062 1.0714 -1.3013 0.67718

1.4083 1.0841 -0.15728 1.3146 1.0841 -1.2107 0.66945

1.4911 1.1479 -0.16660 1.3332 1.1479 -0.89708 0.62941

3/2 2=
ffiffiffi
3

p
-1/6 4/3 2=

ffiffiffi
3

p
-0.87287 5/8

1.5740 1.2117 -0.16269 1.3254 1.2117 -0.71273 0.58709

1.6568 1.2754 -0.15245 1.3049 1.2754 -0.59264 0.54249

1.6983 1.3073 -0.14636 1.2927 1.3073 -0.54722 0.51932

1.7397 1.3392 -0.14006 1.2801 1.3392 -0.48751 0.49559

1.8225 1.4030 -0.12758 1.2552 1.4030 -0.42643 0.44641

1.9054 1.4667 -0.11593 1.2319 1.4667 -0.37959 0.39494

1.9882 1.5305 -0.10540 1.2108 1.5305 -0.34250 0.34118

Dependences on xex=cA0 are suppressed in the headings. All entries given as fractions are exact to within

±1 in the least-significant of 16 digits
a Equation (9a). Average broadening, B0 þ 2B
1ð Þ=3A0 is identical to Bpert=A0

b Equation (15a)
c 4 9 10-14

d 7 9 1012
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2. I
1=Itotal ¼ �1=6, its minimum value, and I0=Itotal ¼ 4=3, its maximum, and

3. A
pert
abs ¼ 5A0=8 while Aabs ¼ 0:66144A0.

We do not recognize the numbers 0.76376 or 0:66144, but their ratio 0.76376/

0:66144 = 2=
ffiffiffi
3

p
to 8 digits.

For 14N, Fig. 10a displays the differential line broadening of the outer lines,

squares, and the center line, crosses. The solid diamonds are values of

DHnarrow
pp ðxexÞ � DHppð0Þ

h i
=A0, where DHnarrow

pp ðxexÞ is the peak-to-peak line

width of the narrowed line measured directly from the spectrum, Fig. 9a. The

outer lines continue to broaden up to xex=cAð Þupper; however, in contrast, the central

line width reaches a maximum value of 2A0=3ð Þ at exactly xex=A0cð Þ = 2=
ffiffiffi
3

p
and

then decreases. Therefore, the observed line width of the collapsed spectrum

decreases while the average line width of the components continues to increase

linearly with xex=cA0ð Þ. Values of DHnarrow
pp are dominated by DHpp0 because of the

reduced height of the outer lines; compare the crosses with the diamonds. The

straight line is the perturbation prediction and the circles are the averages computed

from:

Bh i ¼ 2B
1 þ B0ð Þ=3 For14N ð18Þ

From columns 2 and 3 of Table 4, we find that average value of the broadening is

exactly equal to the perturbation value, column 2 of Table 5.

Figure 10b, circles, displays the broadening of 15N; the straight line is the

perturbation prediction. The solid diamonds are as described in (a). The lines

continue to broaden linearly with xex=A0c up to xex=cAð Þupper, but DHnarrow
pp ðxexÞ

begins to decrease before that.

Figure 11 shows twice the integrated intensity of each of the outer lines, squares,

and the intensity of the central line, crosses. The two outer lines yield 2/3 of the total

intensity at small xex=A0c and the center gives 1/3 as predicted by perturbation

theory. From columns 3 and 4 of Table 5, we find that the average integrated

intensity is exactly equal to Itotal
X

j

Ij ¼ 2I
1 þ I0ð Þ ¼ Itotal For
14N, ð19Þ

even for the range of xex=A0c[ 2=
ffiffiffi
3

p
where I
1 \ 0 because I0 [ Itotal. The

intensity of the outer lines is zero at xex=A0c ¼ 2=
ffiffiffi
3

p
; thus, I0 ¼ 3Ipert ¼ Itotal at

that point. The resulting spectrum at that point consists of one absorption line plus

two rather small dispersion lines, similar to Fig. 9 but without the outer absorption

lines. The intensity is equally shared by the central and outer lines, respectively; i.e.,

the intensity of the central line is equal to twice the intensity of each of the outer

lines, at xex=cA0 = 0.7344. The straight horizontal line at unity is the perturbation

result and the circles are the averages.

cFig. 10 a Normalized broadening 14N: outer lines, squares center line, crosses average from Eq. (18),
circles and perturbation theory, straight line. b Normalized broadening 15N, circles perturbation theory
straight line. Solid diamonds in both a, b, net normalized line width of the narrowed spectra,

DHnarrow
pp ðxexÞ � DHppð0Þ

h i
=A0, where DHnarrow

pp ðxexÞ is the peak-to-peak line width of the narrowed line

measured directly from the spectra (see Fig. 9a)
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Figure 12 shows the dramatic difference in the line shifts for 15N and 14N. For

both isotopes, the outer lines shift toward the center slightly faster than the

perturbation prediction at small values of xex=A0c, but the discrepancy is rather

Fig. 11 14N integrated intensity of the center line, crosses, twice the intensity of the outer lines, squares,
average intensity, Eq. (19), circles, and perturbation theory, straight horizontal line at unity

Fig. 12 Departure of line shifts from the perturbation predictions for 14N squares, and 15N circles
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small for both isotopes until well into the intermediate HSE region. For 15N, the

discrepancy in the shifts is less than 1% up to xex=cA0 = 0.500, above which the

discrepancy increases rapidly. For 14N, the discrepancy is less than 1% up to

xex=cA0 = 0.910, and reaches a maximum of 1.8% near xex=A0c ¼ 2=
ffiffiffi
3

p
. Near

xex=A0c = 4/3, the discrepancy is zero, increasing to 1% at xex=A0c = 1.38, after

which, it increases rapidly, but in the opposite sense as that of 15N.

5 Discussion

5.1 Line Broadening in Hyperfine Multiplets

The two cases that we have treated here show that the average broadening is equal

to the perturbation prediction, Eqs. (9a, 9b), trivially for 15N and by direct

computation for 14N up to xex=A0cð Þupper.
In Ref. [9], Eq. (1) was used to simulate five-line spectra to study a nitrone. In

that case, the situation was more interesting because qj = 1/9:2/9:3/9:2/9:1/9 rather

than equal statistical factors of 1/2 or 1/3 for 15N or 14N, respectively. The factors in

Eqs. (9a, 9b) vary as 8/9:7/9:6/9:7/9:8/9 from line 1 to 5. That case was treated only

up to xex=A0c = 0.487; thus, the very interesting phenomenon of negative

absorption intensities was not discovered, if, indeed, it exists in the five-line case.

Differential line broadening and integrated intensities were quite evident as

demonstrated in Figs. 5 and 7 of Ref. [9], but in common with 15N and 14N, the

average broadenings and average intensities were equal to the perturbation

predictions. In summary, for two-, three-, and five-line multiplets, the average line

broadening is equal to the perturbation prediction up to the limit of xex=A0c studied.
For three- and five-line spectra, integrated intensity moves from outer to inner lines

while the total intensity remains equal to Itotal.

5.2 Hyperfine Multiplet Coalescence and Narrowing

In a very old paper [14], we studied the narrowing of a 19-line proton hyperfine

multiple indirectly by measuring the Gaussian content of the inhomogeneously

broadened central line of di-tertbutylnitroxide. We studied the central line, avoiding

the complication of the dispersion components. The unresolved lines were modeled

with a Gaussian–Lorentzian sum function which is an excellent approximation to a

Voigt line shape function [2], showing that the experimental lines were well

approximated by Voigt line shapes. We knew that the lines broadened and shifted

differentially in the slow-exchange limit, but we reasoned that an average

broadening would emerge from the Lorentzian component and an average proton

hyperfine spacing from the Gaussian. Our mental picture of the narrowing

mechanism was that the lines shifted toward each other until they collapsed leaving

a narrow Lorentzian line. This is essentially what occurs in the case of 15N where

the line spacing rapidly approaches zero near xex=cA0 = 1.

However, it is now clear that our reasoning was faulty; the process is more

complicated than that even for three lines. The decrease in the height of the outer
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absorption lines contributes substantially to the narrowing of the spectrum and when

those lines become negative, that contributes even further. Thus, in Fig. 10a, the

collapsed line narrows (solid diamonds) by 44%, while the hyperfine spacing

decreases by only 20%.

5.3 Transition to the Fast Spin-Exchange Limit

The present work details a method to obtain xex well past the point at which the

hyperfine multiplets coalesce into one line, but falls short of covering the entire

range. For the fast spin-exchange limit, xex=cA0 � 1, the well-known expression

for the narrowing of absorption spectra, first derived by Anderson and Weiss [15],

was cast into a form appropriate for hyperfine multiplets by, for example, Eq. 3.27

of Ref [3]. Evaluating the constants, we have the following:

xex=cð Þ ¼ 0:770

DHnarrow
pp ðxexÞ � DHppð0Þ

h i ; for 14N ð20aÞ

xex=cð Þ ¼ 0:289

DHnarrow
pp ðxexÞ � DHppð0Þ

h i for 15N, ð20bÞ

Referring back to Fig. 10, the solid diamonds are the measured values of

DHnarrow
pp ðxexÞ � DHppð0Þ

h i
=A0. The computed values of xex=cA0 from Eq. (20)

may be compared with the known input values to assess their accuracy. We find that

at xex=A0cð Þupper, Eq. (20) is in error by 35% for 15N and 8% for 14N. For 15N, the

error is reduced to 8% at xex=cA0 = 1.97 and only reaches a reasonable 3.7% at

xex=cA0 = 5.90. For 14N, the error is reduced to 2% at xex=cA0 = 4.10. Assuming

a broadening constant of Kex=c = 150 G/M for 14N, typical for a low-viscosity

liquid at elevated temperatures [8], the following concentrations are needed to

achieve accuracies indicated in the parentheses: 15N 0.085 M (35%); 0.170 M (8%);

and 0.500 M (3.7%). For 14N, one needs 0.160 M (8%) and 0.330 M (2%).

Let us take 8% is a tolerable error where we may say that the transition is

complete. For 14N, the transition is already complete at xex=A0cð Þupper, but, for
15N,

there is a gap between xex=A0cð Þ � 1–2.

5.4 Hypothesis

We offer the following hypothesis: Eq. (16) and the derivative of the real part of

Eq. (1) are the same function. The two have the same domain, the real numbers,

produce only one output value for each set of input parameters, and the output

values are the same for each function to within ±1 in the least-significant of sixteen

digits. Therefore, although we cannot prove it, we have provided sufficient evidence

to form a hypothesis and hopefully entice some good theorist to prove it. Our

argument is only valid to xex=A0cð Þupper.
It has been 56 years since Daniel Kivelson first published [16] a theory to

describe spin exchange between free radicals in liquids. As his reason to ‘‘develop

the theory of exchange effects in liquids in somewhat more detail’’, Kivelson cited
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the ‘‘ingenious explanation of the dependence of EPR line widths on viscosity’’ by

Pake and Tuttle [17] in terms of spin exchange [16]’’.

He was able to predict the effects of spin exchange in the limits of slow- or

fast-exchange, but could not describe the entire range. Equation (1), a rigorous

theory covering the entire range was given by Currin [4]. Then, there was a

period of activity in which some of the greatest minds in EPR contributed

experimentally and theoretically as detailed in References [3, 7] and references

therein. In the intervening 54 years, we have had Eq. (1) which has been verified

in considerable detail experimentally [7–9] except for the additional shifts due to

HSE during the act of spin exchange [6], but in a form that did not give us

analytical expressions or provide a satisfying mental image of the behavior of

the individual lines as they collapsed and disappeared into the merged spectrum.

Equation (16) provides that image: all of the original lines retain their identity

and are very simple admixtures of absorption and dispersion line shapes. We can

only claim this up to values of xex=A0cð Þupper detailed above and only for 2, 3,

or 5 lines; however, if our hypothesis can be proved, it would be the final phase

of the work of many. It is clear that each line loses its identity with a particular

spin state. We view the lines as somewhat like modes of the coupled spin

system.

Note added after this manuscript was in final form: The idea that spectral lines

may be decomposed into individual absorption and dispersion that has been

emerging through the years in our lab has found theoretical support in an important

recent publication by Salikhov where the appearance of dispersion contributions is

‘‘an intrinsic feature of the coherence evolution of collective modes in the presence

of the coherence transfer induced by a relaxation process’’ [18].

6 Conclusions

Equations (1) and (16) are the same within 16-digit precision up to

xex=A0cð Þupper = 0.99908 for 15N and to xex=A0cð Þupper = 1.9882 for 14N, thus

allowing interpretation of the spectra in terms of absorption–dispersion admixtures.

The unweighted average broadening of the lines is identical to the perturbation

prediction. Shifting of intensity from the outer lines to the central line for 14N is

reconfirmed such that all of the intensity resides in the central line at

xex=A0c ¼ 2=
ffiffiffi
3

p
. At higher spin-exchange frequencies, the outer lines are of

negative intensity while that of the central line is larger than the total intensity.
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