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Abstract Kinetic equations for the spin density matrix which take into
account binary collisions and a method of calculating the spin exchange
effective radius have been generalized to the case of dilute solutions of charged
paramagnetic particles. The effective radius of the spin exchange and rate
constant of the bimolecular spin exchange between charged paramagnetic
particles in solutions have been calculated numerically. Calculations have been
performed under the assumption that the exchange interaction is isotropic and
decays exponentially with the increase in the distance between radicals, and the
solution has a given dielectric permittivity and Debye screening radius. De-
pendences of the spin exchange rate constant on the mutual diffusion coeffi-
cient, exchange and electrostatic interactions parameters have been found
numerically. The theory has been applied to experimental results taken from
the literature. The rate constant of the spin exchange between radicals of like
charge found from the experiment and calculated within the developed theory
are in good qualitative agreement.
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1 Introduction
1.1 Current Paradigm in the Spin Exchange Theory

Binary collisions of molecules in dilute solutions determine the rate of many
physical, chemical and biochemical processes (see, e.g., [1, 2]). For example, the
study of collisions of substrate molecules with the active regions of enzyme can
make it possible to determine the extent of accessibility of the active catalytic
enzyme center for drugs, etc.

The attention of scientists has been permanently focused on theoretical and
experimental studies of bimolecular collisions.

The theory of bimolecular collisions in condensed matter is elaborated rather
well for neutral (non-charged) molecules. The frequency of bimolecular collisions
was calculated for the first time by Smoluchowski [3]. He considered a dilute
solution of molecules assuming them to be solid spheres with given radii moving
according to the model of continuous diffusion with a given diffusion coefficient.
He obtained a well known result for the frequency of binary collisions of a selected
molecule A with molecules B,

Zao = 4n(ra + 1) (Da + Dp)Cp = 471rgDapCs. (1)

In this equation r, and rg are radii of spheres representing molecules A and B,
and D, and Dg are diffusion coefficients of molecules-spheres A and B,
respectively, Cp is the concentration of molecules B. We call the quantity
ro = ra + rg as the collision radius or the distance of the closest approach of
molecules.

Equation (1) was derived under the assumption that at the first contact of spheres
they stick together and “drop out of the game”. Thus, Smoluchowski [3] did not
consider re-encounters of the same pair of molecules A and B ([4]; see discussion of
this problem in [5]). Therefore, Eq. (1) gives only the frequency of the first
collisions of the selected molecule A with different molecules B.

It was shown in [4] that in condensed matter, two molecules approaching the
distance ry may re-encounter (repeatedly approach) at the same distance after some
diffusion walk. To illustrate the role of re-encounters in the bimolecular process, let
us present the results for a simple phenomenological model. Let us denote the
probability that two molecules re-encounter at the distance r as p,. This probability
is determined by the kinematics of the molecular diffusion, namely, the mean
displacement length of molecules in the elementary diffusion act and the size of
molecules [5]. The total probability of all re-encounters is
q=p:+ p? + pl +-- =pl(1 — p,). The total number of encounters of two
selected molecules at the distance ry is n = 1 + g = 1/(1 — p,). Thus, the total
collision frequency of the selected molecule A with molecules B should be

ZAf = nZA() = 47TreffDABCB. (2)

We introduced an effective collision radius r.g, which is n = 1/(1 — p,) times
larger than the true collision radius of spheres, ro. = nrg = ro. In addition to the
first collisions with new molecules B, Eq. (2) takes into account all re-encounters of
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Fig. 1 Scheme of the mutual flip-flop of spins of two paramagnetic particles with spin Y2. Arrows
indicate the orientations of spin moments of paramagnetic particles before and after the collision.
Notations of the corresponding spin states of the pair, |1) and |2), are given below the scheme

the selected molecule A with the same molecule B. A set of all encounters of the
same pair of molecules is called as a collision of two molecules.

The rate of a certain process occurring during bimolecular collisions is measured
in the experiment. The frequency of bimolecular collisions can be, in principle,
found from this rate. The measurement of the bimolecular spin exchange (see
Fig. 1) is quite promising for solving this problem. On the one hand, the spin
exchange rate can be found using methods of electron paramagnetic resonance
(EPR), since this process is characteristically manifested in the shape of the EPR
spectra [2]. On the other hand, this is a rather convenient process for a theoretical
description. In fact, spin exchange (Fig. 1) is not associated with the additional
activation as it takes place in the case of bimolecular chemical reactions or the
reorganization of the medium during the electron exchange.

Exchange of spin states (Fig. 1) occurs under the action of the exchange
interaction between paramagnetic particles A and B. Let us assume that the
exchange interaction is switched on only in a very narrow layer ¢ between spheres
with radii rg and rg + J. Let us denote the probability of the mutual flip-flop of spin
moments during one collision as we,. In the interval {ry, ro + 0} the exchange
integral for the pair AB is Jy and the average duration of one collision is .. In this
work we assume that the exchange integral does not depend on the mutual
orientation of colliding paramagnetic particles. Note that the spin density of
paramagnetic particles is not distributed uniformly, so that the exchange integral
might depend on a mutual orientation of two colliding partners. The rotational
diffusion of paramagnetic particles and their relative translational diffusion between
re-encounters tend to average these anisotropic effects in the spin exchange. In the
present paper, we do not consider this motif of anisotropy effects in spin exchange.
More information about this subject can be found, e.g., in refs. [2, 6, 7]. For the
model of the sudden switching of the exchange interaction between paramagnetic
particles during the encounter, the probability of the mutual flip-flop of spins
(Fig. 1) was calculated in a series of works [2, 8-10]:

2.2
| Y

=0 3
21+ 312 G)

Wex

After the first encounter of the pair A and B, the exchange of spin states
according to Fig. 1 occurs with the probability w., and the spin states remain the
same with the probability 1 — we,. However, the spin exchange according to
scheme Fig. 1 can also occur at the re-encounters of the pair. Re-encounters in the
pair lead to the increase in the time 7., which colliding spins A and B spend in the
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region {rg, ro + 0} with the exchange interaction Jy. On average this time is
T. = nt.. In this situation it seems reasonable to assume that the average probability
of the spin exchange in one collision is given by expression (3) with the replacement
of the average time of one encounter 7. by the average summary duration of all
encounters in one collision: 1. = nt.. However, this assumption is justified only if
in the intervals between re-encounters no spin evolution takes place, and the
quantum coherence of the states of spins |1) and |2) is preserved. In the real
situation, this condition is not fulfilled. Therefore in the general case, it is not
possible to allow for the effect of all re-encounters by the simple substitution of the
average time of one encounter by the average summary duration of all encounters
1. = nt. in Eq. (3).

To illustrate the effect of the spin decoherence in the intervals between
subsequent re-encounters on the spin exchange efficiency, let us present the
calculation of the probability of the spin exchange during a collision for the
following phenomenological model. Let us denote the probability of the pair of
spins to undergo the repeated contact as p,. Suppose that in the interval between re-
encounters the quantum coherence of states |1) and |2) (see Fig. 1) is destroyed, and
to the moment of the beginning of the first and all subsequent re-encounters the state
of the pair of colliding spins can be described completely by the populations of
states |1) and |2). Of course, in the moment of an encounter the exchange interaction
between spins forms the quantum coherence of states |1) and |2), so that in the
moment of ending the encounter spins occur in the quantum coherent state of the
superposition of states |1) and |2).

To calculate in the framework of the model described the total contribution of all
re-encounters of a pair of spins A and B at the collision radius, let us introduce the
matrix V of the probabilities of transitions between states |1) and |2) (see Fig. 1)

V= ( 1 — wex Wex )
Wex I —wex )

This matrix makes it possible to calculate the change of the populations of states
[1) and |2) during the time of one encounter as a result of the coherent motion of
two spins under the action of the exchange interaction.

Eigenvalues and eigen states of the matrix V are 1 and 1 — 2we, |¥)) =
(|1) +|2))/v/2 and |,) = (|1) — |2))/v/2, respectively. On the basis of eigen

states, the matrix V is
1 0
Vi= (O 1—2w€x>' (4)

On the same basis, the states of spins | and | are described by vectors u; =
{1,1}/v/2 and uy = {1, —1}/+/2. The probability that the spin exchange occurs as
a result of the first encounter of two paramagnetic particles, after which these
particles are separated in the volume of the solution not undergoing any re-
encounters, is: p; = (1 — p;)(ua|Vi|u1). The probability of the spin exchange as a
result of the first encounter and one re-encounter is: pr = (1 —p;)
(| Vip Viluy ) = (1 —pr)<u2|prVr2|u1>. If k encounters occur, the probability of
the spin exchange is py = (1 — p;){uo|p ' VF uy ).
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Summing the contribution of all possible implementations of re-encounters, we
find the probability of the mutual flip-flop of spins of the pair of paramagnetic
particles A and B in one collision:

_ _ NWex 1 n]%‘cg
p‘_zpk_1+2(n— Dwex 21 +nJ3t3

(5)

The comparison of Eqgs. (3) and (5) shows that under the approximation of
sudden collisions for the considered model, the efficiency of the spin exchange of
the pair of molecules in one collision is determined by the effective time:
Teff = (\/n)fc,

_1 Jotes
T 2143

o (6)

It should be noted that in the considered phenomenological model, the effective
time determining the efficiency of the spin exchange is less than the sum of the
times of residence of two spins in the exchange interaction region on average in one
collision, Ty = (\/ n)t. < nt.. In the general case, when in the interval between re-
encounters of spins in the pair the quantum coherence between states |1) and |2) is
destroyed only partially, the effective time of the spin exchange is supposed to be in
the limits (\/ T < Tegp < NTe.

For particles with spin %% in the half of encounters the spins of colliding particles
are oriented similarly, AT + BT = A7 + BT, and therefore no spin exchange
occurs. With allowance for this, the average efficiency of the spin exchange in one
encounter of A and B is the half of P.,. We note that in EPR experiments in dilute
solutions of paramagnetic particles, the EPR spectrum of separate spins, but not the
spectrum of collided pairs, is measured. Therefore, the difference of the populations
of the states of one spin with two different spin projections is observable. In the
kinetic equations for density matrices of single spins, not P.,/2, but P.,, serves as
the efficiency of the spin exchange in one collision [see [2], Eq. (I.143)].

Within the model of the sudden switching of the exchange interaction at the
collision radius, the rate constant of the spin exchange is:

Kex = Pex4nr0DAB. (7)
This rate constant can be written in the form of the Smoluchowski equation [see

Eq. (1)], if the effective radius of the spin exchange r.sr = Pexto is introduced. Then
Eq. (7) can be written in the form [cp. with Eq. (1)]:

Kex = 4mregDag.

Equations (3-7) are widely used for calculating the rate constant of the spin
exchange. Under the condition of sufficiently strong exchange interaction at the
collision radius, when Jot.g > 1, the rate constant of the spin exchange (7) reaches
its maximum value, which is the half of the rate constant of the first encounters [see

Eq. (D]
Kexmax == (1/2)47TVODAB« (8)

This situation is called the case of the strong spin exchange.
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Expressions (3—8) show that under the approximation of sudden switching of the
exchange interaction only at the collision radius, the effective radius of the spin
exchange is less than half of the collision radius resr = roPex < (1/2) ro. In real
systems, the exchange interaction may cause spin exchange also at distances larger
than the collision radius, and the spin exchange may occur not only in the moments
of the closest approach of particles, but also at intervals between the re-encounters.
As a result, the effective radius of the spin exchange can be larger than the collision
radius. To take into account the extended character of the exchange interaction, it is
necessary to know the dependence of the exchange integral on the distance between
paramagnetic particles. It is expected that under good approximation, the exchange
integral decreases with the increase in the distance r between paramagnetic particles
according to the exponential law (see, e.g., [2])

J(r) = Joexp{—e(r —ry)}. 9)

Here, @ characterizes the slope of the decay of the exchange integral with the
increase in the distance between spins A and B.

For neutral paramagnetic particles, the constant of the spin exchange rate with
allowance for spatially extended character of the exchange interaction (9) and all re-

encounters was calculated in [11, 12]. For particles with spin %2, the spin exchange
effective radius is

reffzz—i—Re{ale {1n(%0> +C—C’l]}, (10)

20 =2 /=% € ~ 0.57721566. .. Euler constant,
DABEEZ

o ™ (20)zozero — 2No(20)
V2 I (z0)z08er0 — 2J0(20)

Here, Ji and N, are the Bessel functions of the first and second kind.

To illustrate the behavior of the effective radius of the spin exchange with the
increase in the exchange integral, Fig. 2 shows this dependence of r.¢ for the model
situation calculated using Eq. (10).

In Fig. 2, the abscissa for the exchange integral uses the log scale to present the
variation of the exchange integral J, in the wide interval {10® rad/s, 10'® rad/s}. On
the basis of Fig. 2, it is possible to state the following. With the increase in the
exchange integral the effective radius of the spin exchange increases. In the region
of the strong exchange interaction, when lJgl/(Dap &%) > 1,

ro 1 |Jo|
~—+—|In|l — 2C|. 11
et R+ 5 [n<Dae2 + (11)

We note that in the model of sudden collisions disregarding the extended
character of the exchange interaction, the effective radius of the spin exchange [see
Egs. (5-7)] tends to the limiting value ry/2 with the increase in the exchange integral
value at the collision radius. Spin exchange with allowance for the extended
exchange interaction is characterized by the effective radius of the spin exchange
rere [Eq. (10)], which cannot be presented as a product of the collision radius ry and
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Fig. 2 Dependence of r.¢ [Eq. (10)] on the exchange integral value J, at the collision radius calculated
for two values of the slope @ of the exchange integral decay with the increase in the distance between two
colliding paramagnetic particles: fast decay of the exchange integral, & = 3 x 10® cm™" (thin curve), and
relatively slow decay of the exchange integral & = 10% cm™" (thick curve). Calculations were performed
forrg =7 x 107% cm, Dap = 1.38 x 10~cm?/s. Note that in this case the limiting value of the effective
radius expected in the framework of the sudden collisions model is 3.5 x 107% cm

the probability P, of the spin exchange in one collision, 7ef 7 Pex?o. To confirm
this, it suffices to indicate that according to Eq. (10) and Fig. 2, res can also be
larger than ry, while in the model of sudden collisions P.xrg < ry/2.

With a decrease in a value of @, the volume of the region, in which the spin
exchange can occur, increases. Figure 2 demonstrates the increase in the effective
radius of the spin exchange with a decrease in the value of @®. With the increase in
the diffusion coefficient of molecules, the effective time of collision of molecules
decreases which should decrease the efficiency of the spin exchange. Equation (10)
confirms the expected dependence of the effective radius of the spin exchange on
the diffusion coefficient.

Thus, the theory of binary collisions between neutral molecules, including the
theory of spin exchange, is developed rather well (see, e.g., [1, 2, 8, 9]) and applied
successfully (see, e.g., [2, 13]).

The situation for charged particles is studied much less, and the theoretical
analysis of the spin exchange during the collisions of charged paramagnetic
particles is a topical problem (see, e.g., [2, 13]). The frequency of the first
encounters for charged particles was calculated by Debye [14]. The rate constant of
the first encounters is

K :f47rr0DAB,
-1

f= Fo/ooexp(li(;)>% ) 12

o

where U(r) is the potential energy of the electrostatic interaction of charged
molecules A and B. The expression for fis given for the case when molecules A and
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918 K. M. Salikhov et al.

B are simulated by spheres with the same radii [15]. In the case of molecules of like
charge, the Coulomb repulsion decreases the rate constant of binary collisions in
comparison with the situation for neutral molecules, i.e., f < 1, while in the case of
oppositely charged particles f > 1. The Coulomb interaction affects not only the rate
constant of bimolecular collisions, but also the efficiency of the spin exchange, since
it changes the average time of an encounter and the average time between re-
encounters, average number of re-encounters and also the trajectory of the diffusion
walk of a pair of molecules in the exchange interaction region.

If the electrostatic interaction has the form U(r) = ¢,q,/(¢r), where g; and ¢, are
charges of two colliding particles and ¢ is the dielectric permittivity of the medium,
then for particles of like charge the factor f [Eq. (12)] is

ROn exp(—ROn/ro)

fl o 140) 1-— eXp(—Ron/l’o)7

(13)

where Ro, = 1q19,l/(¢kT) is the Onsager radius [15]. The Coulomb interaction
energy at the Onsager radius is equal to the thermal energy k7. At room tempera-
tures for single-charged particles for water (¢ =~ 81), the Onsager radius
Ron & 7 x 107% cm. For a solution with ¢ &~ 10 we have Ro, ~ 56 x 1078 cm.
Thus, one can expect that in many cases the Onsager radius is much larger than the
collision radius, i.e., Ro, > 1p. In this situation,

f] ~ (Ron/ro)eXp(—Ron/ro). (14)

The factor (14) reaches its maximum value e '~0.37 at Rou/ro = 1. At (Roy/
ro) > 3 the factor f; < 0.1. The rate constant of the first encounters for particles of
like charge (12) has the form:

K = 47TDABROneXp(_ROn/VO)~ (15)

The effective collision radius of particles of like charge is given by Eq. (16) and
according to the above estimates this radius is expected to be typically less than the
collision radius ry,

Tett = Ron€xp(—Ron/10) <70. (16)
For oppositely charged particles, the factor f [Eq. (12)] has the form:
Ron
I /70 (17)

o 1-— exp(—ROH/ro) '

According to the above estimates, the factor f, in good approximation can be
considered as:

fo = Row/10- (18)

In this situation, the rate constant of the first encounters of oppositely charged
particles (12) has the form:

K = 4nDABROn; (19)

and the effective meeting radius of oppositely charged particles is close to the
Onsager radius
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Tetf = Ron > ro. (20)

This is an expected result. In fact, oppositely charged particles reach the collision
radius, if they approach the Onsager radius.

At present, in the analysis of the experimental data on spin exchange between
charged paramagnetic particles in dilute solutions, it is conventionally assumed
that the rate constant can be described using Eq. (12) with the additional factor
P.x, which describes the efficiency of the spin exchange during a collision [2,
16]:

Kex = Pexf"’nrODAB' (21)

In the approximation of the sudden switching of the exchange interaction, P,y is
given by Eq. (6). Within this approach, determining K. from the EPR experiments
and calculating Py, it is possible to find the rate of binary collisions of charged
particles. It is necessary to take into account that the Coulomb interaction between
colliding partners affects the average time of an encounter at the collision radius. In
comparison with the analogous neutral molecules, the collision time 7. for particles
of like charge should be less than for neutral particles, but for oppositely charged
particles it should be larger.

The effective encounter time Tt.; can be estimated as follows. In the
thermodynamic equilibrium, the flow of pairs of particles into the interaction
region Z, = f4nroDagCp should be equal to the flow of pairs from the collision
region Z_ = vexp(—U(ry)/kT)Cg/tets. Here, v = 4nrgs, v exp (—U(ro)lkT)Cy is
the number of pairs in the region of the exchange interaction. From the condition of
the equality of these flows, Z, = Z_ (the condition of detailed balance), we find the
effective collision time of the charged particles in the region between two spheres

with radii ro and ry + 6
r0(3 U(ro)
= - . 22
M Das e"p( KT (22)

If the electrostatic interaction has the form U(r) = qiq./(er), the effective
encounter time of charged particles in the interaction region can be estimated using
the values of factor f presented, e.g., in Eqs. (14, 18). For particles of like charge,
using Eqgs. (14, 22) we obtain:

}’05 ro r05
f = — —_—. 23
et DagRon  Das (23)
For oppositely charged particles, using Eqgs. (18, 22), we obtain
r05 o ROn r05
=— > —. 24
felt Dag Ron exp< 1o > Dap (24)

In fact, the exchange interaction not only acts at the approach to the collision
radius, but spin exchange can also occur at larger distances between particles. This
can be of especially high importance for particles of like charge. In this case the
Coulomb repulsion hampers the maximum approach of spins and therefore the spin
exchange at large distances between particles becomes important. This means that
the model of the sudden switching of the exchange interaction might be a poor basis
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for the analysis of spin exchange between charged paramagnetic particles. In
Sect. 2.4, we will consider this issue.

1.2 The Aim of This Work

In the brief review presented, it was shown that there exists a rather well-developed
theoretical description of the bimolecular spin exchange in dilute solutions of the
neutral paramagnetic particles. There are analytical solutions for model situations
which are used successfully when interpreting experimental data.

However, the theory is much less developed in the case of the bimolecular spin
exchange between charged paramagnetic particles. In this case, new important
physical parameters appear which characterize the electrostatic interaction and
affect the bimolecular spin exchange rate: the Debye screening radius, Onsager
radius and the dielectric permittivity of the medium.

In the case of charged as well as neutral particles, the constant of the spin
exchange rate can be expressed in terms of the effective exchange radius:

Kex = 47'Cl’effDAB . (25)

The effective radius r.sf combines the effects from the parameters of the
exchange interaction, Coulomb interaction between particles and molecular-kinetic
parameters of the mutual diffusion motion of particles.

According to the existing theoretical ideas, the calculation of the effective radius
of the bimolecular processes is reduced to solving equations for the operator of the
efficiency of a collision [1, 2, 11, 12, 17, 18]. The aim of this work is to develop the
theory of spin exchange between charged paramagnetic particles.

In Sect. 2, we present the kinetic equations for the spin density matrices of
paramagnetic particles taking into account their binary collisions. These kinetic
equations provide the equations for the operator of the efficiency of the spin
exchange during the collision of charged particles. The equations obtained cannot
be solved analytically. Therefore, the effective radius of the spin exchange and the
constants of the spin exchange rate were calculated numerically. The effective
radius of the spin exchange is analyzed as a function of the molecular diffusion
coefficient, the electrostatic interaction parameters of the electrolyte and exchange
interaction parameters. To illustrate the potential of the theory developed in this
work, we have used data taken from the literature [16]. It is demonstrated that the
developed theory provides a basis for the analysis of experiment.

2 Theory of Bimolecular Spin Exchange Between Charged Paramagnetic
Particles

2.1 Mathematical Apparatus

Let us consider the dilute solution of charged particles with spins %. Let us assume

that the concentration of spins is sufficiently low to limit ourselves to taking into
account collisions of two spins and ignore the probability of the simultaneous
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collisions of three and more spins. This assumption is justified, if the concentration
of spins C satisfies the condition @n/3)regC < 1.

If concentration C is measured in M/L units, this condition is reduced to
C < 1 M. When this condition is fulfilled, the set of all spins can be divided into an
ensemble of separate particles and another of pairs of particles with the interaction
inside the pairs. Free particles when approaching may form pairs or pairs decay, i.e.,
spins move from one ensemble into another. The relative motion of partners in the
pair randomly modulates the interaction between spins. In addition, the Coulomb
interaction between charged particles repulses like charges and attracts opposite
charges that affects the probability of their approach to the distance of the effective
spin—spin interaction. The theory is developed within the assumption that the
change of the spins states of interacting particles does not affect their diffusion
motion. Under this assumption, we consider the distance r between partners in the
pair as the external classical parameter for the quantum—mechanical problem about
the spin evolution of an ensemble of pairs. The relative motion of partners in the
pair is described using the model of continuous diffusion.

In [1, 2, 5, 11, 12, 17, 18], a formalism was proposed, using which the kinetic
equations were derived for one-particle spin density matrices g5 and op of the
subsystems A and B with allowance for binary collisions:

da:;(t) - —% [I:IA, 6a] — CaTra [lgAA(?A ® 6A] — CgTrg [lgAB(}A ® 5’13],
o) i (26)
dO'B([) . _i

In these equations, Paa, Pgg and Pap denote operators of collisions (more
exactly, superoperators) determining the efficiency of the spin exchange in
collisions of particles in different possible combinations AA, AB and BB in the
pair. Let us consider the process of collisions of particles of different kinds, A + B.
Equations for the operator P,p are derived from the following considerations.

Let us consider a pair of colliding particles A and B. Its spin Hamiltonian in the
external constant magnetic field H has the form:

H(#) = H(r) = Ho + 1J(r)SaSs,
Hy = Hx + Hg, J(r) = Joexp{—a(r — ry)}, (27)
Hy = gaBHSAz = hwaSaz, Hs = g8 fHSsz = hwpSpz.

Let us divide the ensemble of all pairs into subensembles with a given distance r

between partners in the pair A and B. The kinetic equation for the partial density
matrix of the isolated pair of the pairs with a given r, p(r, t), has the form
0p (7, 1) i

LD — L), 67 0)) + LRI, ) (28)

The last term in (28) is the divergence of the flow of the partial density matrix.
The summary flow j into the subensemble with the given r consists of two
components: the equilibration of the concentrations according to the Fick law and
the motion under the action of the forces of the Coulomb interaction:
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922 K. M. Salikhov et al.

) = W) = ~ 229U, 00 = v = 28w P
kT er
where g5 and gp are charges of partners in the pair, rp is the Debye screening
radius, Dap is the coefficient of mutual diffusion of A and B, k is the Boltzmann
constant, 7T is the temperature and ¢ is the dielectric permittivity of a solution.
Within the model of continuous diffusion we have:

AL N 62 2 6 DABquB r 6 r —rr

L(l’) —L(r) = DAB (@‘f— ral’) _W ((] —‘rg) 5—%)6‘ /D. (30)

It is well known from statistical mechanics that the change of the one-particle
spin density matrix can be expressed in terms of the pair density matrix. In the
considered problem for the one-particle density matrix, e.g., particles A, with
allowance for the pair interaction only with particles B, Vap(r), we have the
following equation [19]:

d&;(t) _ _%[gA,aA ——TrBZ/ P (P, 1)) dF. (31)

Integration is performed over all possible positions of the K-th particle B with
respect to the particle A, summation is performed over all particles B, and Trg
means convolution over spins states of particles B. In the thermodynamic limit
when V, Ng — oo so that Ng/V — Cg, with allowance for the fact that all particles
B on average give the same contribution in collisions with particles A, we have

d&;(t) _ 7% [Ha, 6a(1)] — CuTrs / % [Vas (), pa (7, 1)) dF. (32)

In the general case the change of the two-particle density matrix is “caught on”
the three-particle density matrix. But in the binary collisions approximation, we
ignore the contribution of triple collisions. Therefore in (32), one can use the density
matrix p(r, t) as a two-particle density matrix p,(r, f) found from the solution of Eq.
(28). To obtain the kinetic Eq. (26), the pair density matrix in Eq. (32) is expressed
in terms of one-particle matrices, and to this end the solution of Eq. 28) is sought for
in the Liouville representation in the form (see [1, 19])

plr,1) m G(r,1)6a(1) ® 63(0). (33)

The direct product g,(f) x og(f) is the matrix 4 x 4. We consider it as a

16-vector elongated into the line over columns, and (33) as the action of a certain

linear correlator “superoperator” G(r, t) (matrices 16 x 16) on this vector.

Substituting (33) into (28) and taking into account that in (28) the interaction of a

selected pair is taken into account explicitly, we finally obtain the equation for G.
Using Eq. (33), the left-hand side of Eq. (28) is presented in the form:
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dp(rt)  dG(ri dé dé
pét ) _ C(h )JA®GB—|—G(r t)7®aB+G(r t)aA®d—tB

According to the arguments presented above, in the time scale of the “lifetime”
1, of the pairs we use the approximation:
d&A(t) a0 d&B(t) i

0 = _ﬁ [HA,O'A(Z)], P = _ﬁ [I:IBvé-B(t)]

This approximation means that in the time scale of a collision of two molecules,
we ignore the change of the one-particle density matrix due to binary collisions,
since the binary collisions change the one-particle matrix at the times of the “mean
free path” between binary collisions.

From (28), we obtain equation for the correlator G(r, f)

oG(r,t 22
U £6(rn) 4 WG(r0) + (00, Gl 1), (34)
where W(r) = iJ(r) [(SASB)tr®f4 — f4 X (§A~§B):|, Q :é [le ® 14 - 14 ® HO]
Here H" means transposed operator.
Here, all operators (with one hat) are given in the Gilbert space of the pair of
spins and 14 is the unity operator there. In the stationary regime, at times ¢ > 1,
G(r,t) satisfies stationary equation

L(NG(r) + W(RG(r) + [0, G(r)] = 0. (35)

Let us formulate the boundary conditions for the correlator G(r). When the
partners in the pair move apart, the correlation between their spin states should
weaken [19]. From this we have the first boundary condition:

lim G(r) = 1. (36)

r—0o0

Assuming that at the radius of the closest approach the total flow of pairs of spins
is zero, we have second boundary condition j(r = ry) = 0, or

aGA(’O) _ 49a98 (1 i ro) :gé(ro) (37)

or ekTr3 D

The superoperator P (impact operator) describes the change of the pair density
matrix in the interaction region and, according to Eqs. (32, 33), is determined by the
expression:

PAB—/W )G(r) (38)

Substituting Egs. (33), (34), (38) into (32) and repeating all these expressions for
the cases of collisions of particles of the same kind, we come to the kinetic
equations for spin density matrices [Eq. (26)].

The coefficients of kinetic equations give the rate constants of the binary process
of the spin exchange. With these coefficients, one can determine the effective radius
of the spin exchange (21).
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Thus, these relations are the mathematical apparatus for calculating the efficiency
of binary collisions. In the situation considered, the kinetic equations cannot be
solved analytically, and it is necessary to perform numerical calculations. The
algorithm of the numerical calculations is given below.

2.2 Algorithm of the Numerical Calculation of the Effective Radius of Spin
Exchange

The substitution x = r/rp transforms the boundary value problem (32) and the
boundary conditions (33) and (34) into the dimensionless form:

2 2 2 1 e
GNXX +;G,X — C((l —+ )G G) 7 + W()e G + [CI(M } O (39)
W zéVf/(r) 7 ’%Q C—qACIB & = aer
0 D 0)s 9o 05 e kT D;

2 0G 1 2
lim G()C) = 1167 (XO) = é( ‘:sz> _)(OG()C())7 X0 = VQ/VD.
0
The problem (39), in turn, is transferred to finite interval [0,1] by the fractional-

linear transformation y = 1 — x¢/x and takes the form:

(1-y° & 1=y (0=9z All- 2 A
— G -G 5 =G ,G]=0,
2 G, —¢ po L \ P +ige G + (g, G =
(40)
_a . 36(0) o\
limG(y) = 1 ={{1+—=)e »G(0
timG0) = fuo, S5 = (1422) e HG0)
suitable for the numerical solution by the finite-differential method.
The impact operator at this substitution has the form:
1 =2
b o G(y) _m=m
Pag = 4mDap _ZWO/ 4 e “’»")dy. (41)
) 0 1—y)

Equation (33) contains a commutator [qo, G] that makes it inconvenient for the
standard matrix calculations. Therefore in (40), let us use again the Liouville
representation. Let us denote as G the vector with the dimensionality 256 x 1
obtained by the elongation of the matrix G over the columns in a line, and
denote vectors obtained in the same manner from matrices 1;6 and O as 16
and 616.

Let us introduce l~, lg,nﬁ, and then # and v according to formulas
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4 4 3
Foydef (=) 8 2 o e 1 - L—y)y| wz 2
l(y)é( 2) 116®116a k(y);_c ( 3y) +( > ) e l’f"116®]16,
X0 0 X
~odef =y w2 s 2 P 2 2r R (42)
) =¢ xOyé’ =116 ® Li6 + Lie @ Wwoe ™ + 116 @ gy — gy ® Lye,

i(y) = k(y)/1(y), 5(y) = m(y)/1(y).
Equation (40) with allowance for (42) takes the final form:
G,, + G, + G = O,
G(1)=Tis, G}(0) = (1 +rp/ro)e "™ G(0),

where matrices # and v have the dimensionality 256 x 256.
Let us write the difference scheme for (42) with N + 1 sites equidistant over h:

(43)

Gi1 + (Weh* — iixgh — 2116 ® 116)Gk + (116 ® Lig + hitr)Ges1 =0, k=T1,N— 1,
/[l + h{(1 + rp/ro)e /™|, Gy = Ly
(44)

When solving the problem numerically, it appeared to be useful to perform the
additional transformation [18], namely, to transform Eq. (40) to the Q, operator
eigen basis. Due to this procedure, all superoperators in Eq. (44) become of the
decomposable (step-matrices) form. As a result, the solution of the problem (44) is
reduced to the finding of the 16 vectors of the 16-th dimension instead of finding one
256-th dimension vector.

As a result, the implementation of the scheme (44) demonstrated good
convergence. The obtained solution was substituted into the formula for the impact
operator (41), and the integral in it was calculated according to the Simpson formula.

2.3 Results of the Calculation of the Effective Radius of Spin Exchange
for Charged Paramagnetic Particles with Spin %2

Using the above equations, r.¢ for charged particles with spin Y2 for different values
of J(rg) and & Eq. (9) was found.

Figure 3 illustrates the dependence of r.¢ radius on J(ry). The analysis of curves
given in Fig. 3a—c shows that the effective radius of the spin exchange increases
with a decrease in the coefficient of the mutual diffusion of paramagnetic particles.
This is explained by the fact that with a decrease in the mobility of molecules a time
of the stay of two colliding particles in the region of the exchange interaction
increases. The effective radius of the spin exchange for oppositely charged particles
is larger than that for neutral particles, and the effective radius of the spin exchange
for particles of like charge is less than that for neutral particles (see Fig. 3). This is
an expected result qualitatively. But now we can calculate quantitatively the effect
of the Coulomb interaction of charged particles on the spin exchange radius. In the
case of neutral particles the effective radius of the spin exchange r.¢ reduces to the
linear dependence on InlJyl with an increase in the exchange integral J, on the
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«Fig. 3 Dependence of the effective radius of spin exchange on the exchange integral at the collision
radius for different values of the diffusion coefficient of paramagnetic particles in a case of like charge
(thin solid curves), for neutral particles (thick dotted curve) and for oppositely charged particles (thick
solid curve). Calculations were performed for the following parameter values: ro = 6 x 107% cm,
&=3x10"cm™", £ =20, rp = 10 x 1078 cm, a Dag = 1.38 x 107> cm?s, b Dap = 107 cm?/s,
¢ Dap = 1077 cm?/s. Abscissa for the exchange integral J, uses the log scale to present the variation of
the effective radius of spin exchange in the wide interval {10° rad/s, 10" rad/s}

collision radius (see Eq. (11)). The numerical calculations also showed that for
charged particles the effective radius of the spin exchange r.¢ reduces to the linear
dependence on InlJyl in the region of strong exchange (see Fig. 3). If the effective
radius of the spin exchange is larger than one-half of the closest approach radius, the
situation of the strong spin exchange takes place [cf. Eq. (9)]. Let us assume that the
situation of the strong spin exchange is implemented, when the action of the
exchange interaction, i.e., the product of the exchange integral J(r.¢) by the time T
of residence of the particles in the interaction region is on the order of 1 (Note that
the exchange integral is given in the units of rad/s). From this condition,
Joexp(—arer)Terr & 1, we obtain the estimate of the effective radius of the strong
spin exchange regr & (1/2) In(JyTefr). In fact, Tegr in turn can depend on rg, but this
dependence is not exponential, it could be, e.g., quadratic Tef ~ rgff /Dag or linear
Teft A efr/@Dapor independent T,y ~ /e’ Dap.

The effective time of the stay of particles in the region of the effective exchange
interaction depends on @. The faster the decay of the exchange integral, the less is
the region of the effective interaction and, as a result, the less is the effective radius
of spin exchange. This qualitative expectation is completely confirmed by the
numerical calculations (see Fig. 4).

In the case of the spin exchange between charged particles, the Debye screening
radius is an important parameter. With a decrease in the Debye screening radius, the
role of the Coulomb interaction should decrease and the effective radius of the spin
exchange should tend to the radius of the spin exchange for neutral particles. We
performed numerical calculations, which completely confirmed these qualitative
statements. Figure 5a, b illustrates that at rp = 1.6 x 10™® cm (when the Debye
screening radius is much less than the collision radius), the effective radius of the
spin exchange between charged particles almost coincides with the radius of the
spin exchange for neutral particles. In the other example (see Fig. 5c, d), when
rp = 1077 cm is nearly two times larger than the collision radius r, = 6 x 107°
cm, which we selected for these calculations, the Coulomb interaction quite strongly
affects the radius of the spin exchange in comparison with the case of neutral
particles. Curves (a, ¢) correspond to & = 108 cm™ ! curves (b, d) correspond to
®=3x10%cm™.

The numerical calculations above show that at rather high values of the
coefficient of mutual diffusion of particles and rather large slope of the exchange
integral decay, the spin exchange is no longer strong even for collisions of
oppositely charged particles, which can be kept in the interaction region by the
Coulomb attraction for a relatively long time.
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Fig. 4 Dependence on J(ry) of the effective radius of spin exchange between paramagnetic particles of
like charged (a) and oppositely charged paramagnetic particles (b) for two values of the slope of the
exchange integral decay with the increase in the distance between colliding paramagnetic particles:
& = 10% cm™! (solid curves), ® = 3 x 10® em™! (dotted curves). Calculations were performed for the
following parameter values: ro = 6 x 1078 cm, & = 20, rp = 10 x 1078 cm, Dap = 1.38 x 107° cm?/s

Tables 1 and 2 summarize the calculated values of the effective radius of spin
exchange for charged paramagnetic particles for a series of selected values of
parameters, which affect the value of this radius.

Data given in these tables may be useful as references during the interpretation of
experimental data. Data presented in these tables and Figs. 3, 4, 5 give an idea about
the scale of the possible variations of the effective radius of the spin exchange
during the variation of the molecular-kinetic parameters, and also parameters which
characterize the exchange and electrostatic interaction between charged paramag-
netic particles.
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o CM

10° 10" 10" 10" 10"
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Fig. 5 Comparison of effective radii of spin exchange for charged and neutral particles at different
values of the Debye screening radius: a, b rp = 1.6 x 1078 cm, ¢, d rp = 10 x 10~% cm. Other
calculation parameters are: ro = 6 x 1075 cm, & = 20, Dap = 107> cm?/s. Abscissa for the exchange
integral uses the log scale to present the variation of the effective radius of spin exchange in the wide
interval {10° rad/s, 10" rad/s}. Thin solid curves present the data for particles of like charge, thick dotted
curves present data for neutral particles and thick solid curves are data for oppositely charged particles

Table 1 Values of the effective radius (in 10~® cm units) of spin exchange between oppositely charged
particles for a selected set of parameters of exchange and electrostatic interaction, and diffusion
coefficient

Jo, rad/s 10" 10" 10" 10"

®, cm™! 108 3 x 108 10 3 x 108 10 3 x 108 10 3 x 108
D,em¥s 107 107° 107 107° 107 107 10=° 107° 10~ 107° 107> 10 107> 107° 107° 107¢
e=20

p=2A 134 381 018 286 381 474 286 336 474 588 336 3.65 588 7.03 3.65 4.02
p=10A 533 584 35 563 58 630 563 567 630 7.04 567 578 7.04 789 578 5.94
e =81

rp=2A 188 378 0.14 269 378 473 269 33 473 588 33 361 588 7.03 3.6l 3.99
p=10A 201 430 034 351 430 513 351 389 513 617 3.89 415 6.17 725 4.15 4.48

The distance of the closest approach ry = 6 x 107% cm

2.4 Approximate Estimates of the Effective Radius of the Spin Exchange
Between Charged Particles

In this work we developed a theory that makes it possible to calculate the effective
radius of spin exchange between charged paramagnetic particles. The knowledge of
this radius makes it possible also to calculate the rate constant of the spin exchange
[see Eq. (25)]. It is of interest to compare the results of the exact calculations with
approximate estimates. In the model of sudden switching of the exchange
interaction, the effective radius of spin exchange between charged paramagnetic

@ Springer



Spin Exchange Between Charged Paramagnetic Particles 931

Table 2 Values (in 10~ cm units) of the effective radius of spin exchange between particles of like
charge for a selected set of parameters of exchange and electrostatic interaction, and diffusion coefficient

Jo, rad/s 10" 10" 10'? 10

@ cm~' 10° 3 x 108 10° 3 x 10% 10° 3 x 10% 108 3 x 108
D,cm¥s 107 107 107> 107™° 107 107® 107 10° 10> 107® 107 10™° 107> 107® 107> 107°
e=20

p=2A 095 372 009 239 372 472 239 3.18 472 588 3.8 3.53 588 7.03 353 3.94
rp = 10A 007 1.6 0004 027 1.6 312 027 115 3.12 467 1.15 157 467 613 157 2.08
¢ =8l

p=2A 1.08 375 0.2 257 375 473 258 325 473 588 325 358 588 7.03 358 397
= 10A 059 322 005 177 322 433 1.77 267 433 558 267 3.04 558 681 3.04 348

The distance of the closest approach ro = 6 x 107% cm

particles is conventionally estimated as r.¢;r = f Pex 1o [see Eq. (21)] [2, 16]. In this
expression, f is given by Eq. (12), and the efficiency of the spin exchange Py is
given by Eq. (6), in which time 7 is used as the effective collision time [Eq. (22)]. In
this estimate, extended character of the exchange interaction is ignored, and it is
considered that the exchange interaction is switched on suddenly only in a narrow
layer between spheres with radii ry and rp + 0. We studied to what extent the
considered approximation is applicable for calculation of the effective radius of spin
exchange between charged paramagnetic particles. Figure 6 shows the results of
calculations according to formula r.r = fPexro and calculations using the consistent
theory of spin exchange for particles of like charge and oppositely charged particles
developed above.

It follows from Fig. 6 that the approximation rep = f Pexro Eq. (21) gives
satisfactory values of the effective radius of the spin exchange between
oppositely charged paramagnetic particles in nonviscous solution. In the case of
opposite charges of colliding partners, the approximate results deviate noticeably
only in viscous solutions with low diffusion coefficients and/or strong exchange
integral (compare Fig. 6a—c). However, for particles of like charge it is seen
(Fig. 6) that the approximation re = f Pexrg considerably underestimates the
effective radius of the spin exchange. We interpret the last statement in the
following way. When particles have like charge the Coulomb repulsion strongly
reduces the collisions with the closest approach, f; < 1 [see Eq. (13)]. In this
situation the exchange interaction at distances between particles more than the
collision radius r, give an essential contribution to the spin exchange efficiency.
This contribution is taken into account in the calculations using the consistent
theory developed in this work and not when the approximation regs = f Pextp i
used.

Thus the discrepancy between the effective spin exchange radii calculated in the
framework of the consistent theory and in the framework of the sudden collision
approximation arises due to an extended character of the exchange interaction

(Eq. 9)].
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«Fig. 6 Comparison of the effective radius of the spin exchange calculated for oppositely charged
particles (thick curves) and particles of like charge (thin curves) within the theory developed in this work
(solid curves) and in the approximation reg = f Pex 7o (dotted curves). Calculations were performed for
the following parameter values: ry = 6 X 1078 cm, & =3 X 108 cmfl, e=20, p = 1077 cm,
Dag = 1.38 x 107> cm?¥s (a), Dag = 10~%m?s (b), Dap = 10~ "cm?/s (c)

3 Experimental Results and Discussion

Experimental results are taken from the literature [16]. The reader is referred to Ref.
[16] for experimental details; here, we briefly summarize the methods and results.

The stable monoprotic nitroxide spin probe 2,2,5,5-tetramethylpyrrolidin-1-oxyl-
3-carboxylic acid (3CP) was utilized as a model to study molecular collisions in
aqueous electrolyte solutions. The rate constant of Heisenberg spin exchange, Ky,
for CP uncharged (at low pH) or charged (CP™) (at high pH), was measured as
functions of temperature and ionic strength. It will be instructive to compare the
results for charged or uncharged 3CP with those of another relatively small,
uncharged nitroxide spin probe (nitroxide), 2,2,6,6-tetramethyl-4-oxypiperidine-d;¢
(pDT). By small, we mean that the unpaired spin density is sufficiently large over
the entire molecule that the relative orientations of two nitroxides upon collision is
unimportant. Contrast this with the situation in Ref. [7] where the nitroxide was not
“small.”

o]
COOH
3Cp
N \ pDT
0- 0,

The concentration broadening, AB, in the EPR of 3CP, was studied in seven
series of samples, each at constant ionic strength, four with 3CP™ (Series A-D) and
three with 3CP (Series E-G) varying the concentration of the nitroxide. The values
of 2(Ccp- + Cnac1 + Cnaon + Cucr) were as follows (in mM): A, 67; B, 148; C,
297; D, 1,200; E, 29; F, 97; and G, 1,230. The results for 3CP were independent of
ionic strength, so they were averaged over the three series. Either HC1 or NaOH was
added to shift the equilibrium between 3CP and 3CP~ and NaCl was added to
maintain the total ion concentration constant in each series. In all cases, AB was an
excellent linear function of the concentration, C. The slopes of these lines in units
G/M yield the values of Kex.

Values of K are given in column 7 of Table 3. The direct measurements of the
spectra in Ref. [16] show that dipole—dipole contribution to the line width is
negligible for all 7> 298 K and contribute no more than 5 % at 298 K. The
concentration broadening due to dipole—dipole interactions can be taken into
account using methods developed recently [20, 21].

@ Springer



K. M. Salikhov et al.

934

198°1 (119 4 1§9°0 6£'C 6v0'1 6£v'C 6T 8IS'T 08660 ISCCT  LTI'LT 090ST0°0 6LvEE 86C ¥'8L  O-H
€'y SOL'T TLS'T SOL'T 14894 SoL'T SoL'T LESY 86660 L8Y9T  T0SL'E 16611 §'0001 8SE S6S a
65 08’1 SLTT €08°1 0¥0°'C 08’1 08’1 09°C 66660 ELYIT  916L'E 16611 TEYOL €ve 8¢9 a
LE]T £v8’l S00°1 781 019°1 £v8'l €v8’l YLL'T 16660 LT'69T  0PE8E 16611 8’119 8T¢ €89 a
001'C £r8’l YrL0 781 wl'l 781 €v8’l §S0T 66660 LTSTL  PLL8'E  T661'1 LO'ESY €I¢ TEL a
1€S°1 €06'1 0¥S°0 061 898°0 $06'1 €06°1 eyl €666°0 L7806 91T6'E 16611 61'81€ 86T V8L a
ocr's 651 108°1 651 L68'C 6571 6SY'l 6L L6660 0€°1€C  99¢S°'L  0696C°0 69601 8SE S'6S o]
€SIy €05°1 8SY'l €0S'1 8¥€'T €0S°1 €0S°1 6L’ 86660 €6'881  00C9°L  0696C°0 0€'9¢8 €ve 8¢9 o]
81T'¢ Y4 ocr'1 9es’l 6181 S Y4 16T 9666°0 €69%1  €S0L°L  0696C°0 I1°CP9 8TE €89 o]
STr'e 7951 0S8°0 Sy 69¢1 $9S°1 9S°1 6¥1°C 86660 LUTIT  ¥C6LL 06960 eELY €1E TEL o]
6ELT 019'1 809°0 6091 1860 019°1 019'1 208’1 6660 000008  TI8YL 06960 60 1¢E 86T T'8L o]
79°S 6LET Lol 6LET ¥81°¢ 6LE’T 6LET SE8'Y 86660 €6°0CC  6L9°01  88LYIO £9901 8S¢€ S°6S q
6vSY LIY'T 88S°1 LIV'1 §96°C LIY'1 LIY'1 978'¢ 66660 0€6LT  L6L0OT  88LYIO SOEP8 €FE 8¢9 q
9ts¢e vyl 0€T'T A L86'1 vyl (g 9€6'C 66660 0corl  816°01 88LYI0 0¥'LY9 8TE €89 q
8LSC Sadl 006°0 Sadl 294! il Sadl S91°C L6660 0S¢0l 7011 88LYI0 rLLY €1€ TEL dq
CI8'l 99t'1 £€9°0 L9Y'1 120°1 99’1 99%'1 €IS'T 96660 €SEEL  L9TTT  88LYIO 96°¢eE 86T ¥'8L q
686°S 89T'1 980°C 89T'1 ELE'E 89T'1 89C'1 0r8¥ 06660 LO'€0T  $S8'ST 860L90°0 ¥'L90T 8S¢ S°6S v
108'¥ 10€°T 1L9'1 10€°T €0L'T 10€°1 10€°T 678'¢ 66660 LLY9T 62091 860L90°0 St'vr8 €ye 8'€9 v
SLL'E 8YE'l 01¢'T 8ve'l €CIe 8ve'l 8YE'l 8€6'C 06660 LO'TET  80TI9T 860L90°0 L6'LY9 8TE €89 v
8LT 9¢'1 9960 9€'1 ¥9S°1 y9¢'1 $9¢€'1 891°C 06660 LEYL6  TOEI9T 860L90°0 IS'LLY €1€ TEL v
S00C 0Tyl ¥69°0 0Tyl 9CI'l Iyl 0Tyl YIS T 06660 001'TL  8LS9T 860,L90°0 08'¢e€ 86T ¥'8L v
s s S
/pel 01 W 0 /pel ;01 Wo . O
op ay, op ayy
wo o 01 S/Wo . 0 W/D (<Dp wd o O [DEN 103
LUD O X §=® U O XT= WD O] X =2 e ‘aveg i noigp> ‘A [uorl g 100 g/ g I o3 opdureg

A[reotrownu paye[nofed asueyoxe urds oy} Jo SnIpel dANOIJO Y} pue JD¢ snoanbe 10} sjnsar [ejuowirodxd pue siojowered ¢ Qe[

pringer

As



935

Spin Exchange Between Charged Paramagnetic Particles

UOIIETUAOUOD Y} SNSIAA JI JedUI] I0J UOIB[OIIOD JO JUAIOYJA0))
[91] “Joy woyy elRq
[€2] Joy woiy vl ,

0S9°¥ 690°C YLI'T 690°C 659°C 690°C 690°C 098F 9666°0 LSTEE  TP6'ST 090ST0°0 L'TLOT 8S¢ §'6S  O-H
910 L0T'T ger'l L0T'T 98C'C L0TT L0T'T P78'¢ L6660 L9°08T  8TT'9T 090ST0°0 L9LY8 ¢ 8¢9  O-H
y0€'€ (A5 OLT'T €1¢T PLY'T [45%4 [48%¢ 6¥6'C 66660 ¥S'STT  TTS9T 090ST0°0 8T0S9 8¢ €89 OH
6vS'T LLET L68°0 LLE'T [§2 4! LLET LLET YLI'C 66660 I6'0L1  TT89T 090ST0°0 6€6LY €le TEL  OH
N N S
/pel 01 wWd Ol /pel 0 Wd . O
op ayy o gy
wo o 01 S/Wo . 0 W/D (<Dp wd o O [DEN 103

LUD O X §=® U O XT= WD O] X =2 e ‘aveg i norgp> ‘A [uor] g 300 JO/L WL I o2 odueg

panunuod ¢ dqe],

prlnger

Qs



936 K. M. Salikhov et al.

The translational diffusion coefficient of a sphere of radius a is often
approximated by the Stokes—Einstein equation as follows:

D = kT /(6man) (45)

where # is the shear viscosity. In the case of like molecules the mutual diffusion
coefficient is twice the value given by Eq. (45). Values of the mutual diffusion
coefficients for the systems studied are tabulated in column 9 of Table 3. In the
theory we present the spin exchange rate constant as Kex = 4mreDap From
experimental data, we obtain this rate constant. Thus, from equation

47 teDap = (3V/3/4)ydB/dC (46)

we determine the experimental value of the spin exchange effective radius r.g. The
results are tabulated in column 10 of Table 3.
According to the theory of strong electrolytes [14], the thickness of the ionic
layer (Debye screening radius), rp, is defined by
2

= ¢ ZniZi2 (47)

&o& kT

where n; is the number density of ions of type i with charge eZ;. Evaluating the
constants and changing units,

1,265 1,265
rpt = T Z Gz} = T 2(Ccp- + CNact + Cnaon + Cual) (48)

where rp is given in A with concentration of the ith ionic species and Cj, in
mol L™, The second equality in Eq. (48) follows because only univalent ions are
involved.

Utilizing data [22] for the temperature dependence of ¢ of water in the range
273-373 K, the rp values for the samples are tabulated in column 6 of Table 3.

Figure 7 compares the temperature dependence of K. for 3CP and 3CP~ with
that for pDT. The viscosity of the solutions were corrected for the presence of salts
using the equations of ref. [23]. Most of the viscosity correction, which reaches a
maximum of 7 % at Cnac; = 600mM, is due to NaCl. Including all ions in the
correction, using Cioa rather than Cn,cp would only change the viscosity by a
maximum of 0.6 %

The data presented on Table 3 allow us to make several observations.

The spin exchange rate constant and the effective radius of the spin exchange
between radicals of like charge, 3CP™, are less than between uncharged radicals,
3CP. This observation is rather trivial, since it is expected that Coulomb repulsion
between 3CP~ will reduce a probability of an encounter of the radicals of like
charge compared to the case of uncharged radicals.

The spin exchange rate constant between charged radicals, 3CP™, or uncharged,
3CP, radicals increases when the molecular diffusion coefficient (mobility of
molecules) increases. This experimental fact is expected, since the diffusion
coefficient determines the frequency of binary collisions [see, e.g., Eqgs. (7, 8)].
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Fig. 7 Spin exchange rate constants for Samples A upside down triangles, B diamonds, C triangles, D
filled circles, Average E-G squares, data taken from ref. [16]; pDT, open circles, data taken from ref.
[24]. The lines are linear least-squares fit to guide the eye. In this range DD is negligible for all samples.
At lower temperatures, DD becomes significant for pDT and the corrected values of K. curve downward
and extrapolate to the origin [24]. See Fig. 9 of ref. [24]

The effective radius of the spin exchange decreases when the diffusion
coefficient increases (see column 7 in Table 3). This experimental observation
supports the theoretical prediction. As was discussed in the Sect. 2 above, an
increase of the molecular mobility reduces the time that two colliding particles
spend in a region of their effective interaction.

Thus, the experimental data presented confirm qualitatively the theoretical
predictions concerning the rate of the spin exchange between charged and
uncharged paramagnetic particles.

However, when interpreting the experimental data quantitatively the theory meets
difficulties. For the system considered in this section of our work, we know all
molecular-kinetic parameters as well as parameters of an electrolyte. But we know
very little about the magnitude of the exchange integral and the dependence of the
exchange integral on a distance between two radicals in a solution. We wanted to
determine the parameters of the exchange interaction by comparison of the effective
radius of the spin exchange, found from the experimental data taken from [24]
(column 10 in Table 3) and theoretical simulations with fitting parameters of the
exchange interaction. Results of some simulations are presented in columns 11-16 in
Table 3. In Table 3 we present the results of fitting for three different values of the
parameter @. For each chosen value of @, we succeeded in finding fitting parameter
Jo, which allows us to describe perfectly experimental data at 298 K. But the fitting
parameter Jj, increases when the diffusion coefficient increases (see columns 11-16
in Table 3). We plan to investigate this observation further.
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From Table 3 we see that the effective radius of the spin exchange, reg, is less
than one-half of the collision radius, ro/2 = a = 3.23 x 1075 cm, rey < a (see
column 10 in Table 3). Thus for 3CP and 3CP™ radicals, the spin exchange is not
strong. From this fitting procedure we find that, in a case of 3CP, 3CP™ radicals, the
exchange integral at the closest approach of two radicals J, is around 10'" rad/s.

Our estimates of the two previous paragraphs rely quantitatively on the validity
of the Stokes—Einstein equation that is known to be inaccurate in some cases.
Particularly, in water, values of K. are consistently found to be smaller than in
other solvents, by a factor of 0.50-0.71, attributed to a steric factor due to hydrogen
bonding to the nitroxide. See ref. [25], and references therein. Thus, these estimates
are presented to illustrate the method and more accurate values of Jy and & could
result from a better understanding of the steric factors and the values of Dag.

4 Conclusions

In this work we have developed a consistent theory of the bimolecular Heisenberg
spin exchange between charged spin !> paramagnetic particles in dilute solutions.
There were formulated kinetic equations for the spin density matrices of the
paramagnetic particles taking into account the binary collisions. The algorithm was
suggested which allows one to determine numerically the rate constant and the
effective radius of the spin exchange. For model situations there were investigated
dependencies of the effective radius of the spin exchange on the molecular diffusion
coefficient, on parameters of the Heisenberg exchange interaction and on the
parameters which characterize the electrostatic interaction of the charged particles in
electrolytes. The theory was applied for the analysis of the experimental data from
literature for the radicals of like charge. Good qualitative agreement was achieved.

Within the proposed theory, the effective radius of the spin exchange of charged
particles is determined by the parameters of the exchange interaction, {J,, @},
parameters of the electrostatic interaction, {dielectric permittivity & Debye
screening radius rp}, the collision radius ry and the coefficient of mutual diffusion
of particles Dag. The effective radius of the spin exchange r.(Jo, ®, €, p, Yo, DaB)
can be calculated using the theory developed in this work if values of all parameters
{Jo, ®, & rp, 19, Dap} are given. The spin exchange rate K.x = 4nregDapCp i
measured in EPR experiments. Thus, the spin exchange rate measured in EPR
experiments contains information about the interactions between paramagnetic
particles, kinematics of the mutual diffusion of colliding pairs of paramagnetic
particles and the local concentration Cg of paramagnetic particles. In such situation
different strategies of the application of EPR spectroscopy are implemented when
studying the spin exchange.

Let us assume that there is a system, for which all parameters, which determine
K.x, except for the exchange interaction parameters are known from some
experiments. In this case, one can determine the effective radius of the spin
exchange from the EPR data and then to select such values of the exchange integral
parameters, which lead to the coincidence of the calculated radius of the spin
exchange with the value for this radius found from data of EPR spectroscopy. As a
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result, from data on the spin exchange in solutions one obtains information about the
exchange interaction between two paramagnetic particles colliding in a solution. In
this work, we have followed this strategy and estimated the exchange interaction
parameters by using the rate constant of the spin exchange subtracted from the EPR
data. The exchange integral depends on the overlap of electron orbitals, so that
information about the exchange interaction obtained in this manner is useful in the
analysis of the kinetics of the electron transfer during the binary collisions in a
solution [2, 13].

The problem of determining the concentration of paramagnetic particles in
complex systems may arise. For example, in some situations it is necessary to
determine the concentration of oxygen molecules in certain regions of an organism.
Collisions of spin probes with oxygen molecules broaden the EPR spectra lines of
spin probes. One can find the oxygen concentration from the measured concen-
tration broadening of the EPR lines, if there is a theoretical estimate of the effective
radius of the spin exchange. Such a strategy of finding the concentration of
paramagnetic particles agents broadening the EPR spectra lines of spin probes is
quite successfully used in oximetry (see, e.g., [26]).
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