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Abstract Kinetic equations for the spin density matrix which take into

account binary collisions and a method of calculating the spin exchange

effective radius have been generalized to the case of dilute solutions of charged

paramagnetic particles. The effective radius of the spin exchange and rate

constant of the bimolecular spin exchange between charged paramagnetic

particles in solutions have been calculated numerically. Calculations have been

performed under the assumption that the exchange interaction is isotropic and

decays exponentially with the increase in the distance between radicals, and the

solution has a given dielectric permittivity and Debye screening radius. De-

pendences of the spin exchange rate constant on the mutual diffusion coeffi-

cient, exchange and electrostatic interactions parameters have been found

numerically. The theory has been applied to experimental results taken from

the literature. The rate constant of the spin exchange between radicals of like

charge found from the experiment and calculated within the developed theory

are in good qualitative agreement.
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1 Introduction

1.1 Current Paradigm in the Spin Exchange Theory

Binary collisions of molecules in dilute solutions determine the rate of many

physical, chemical and biochemical processes (see, e.g., [1, 2]). For example, the

study of collisions of substrate molecules with the active regions of enzyme can

make it possible to determine the extent of accessibility of the active catalytic

enzyme center for drugs, etc.

The attention of scientists has been permanently focused on theoretical and

experimental studies of bimolecular collisions.

The theory of bimolecular collisions in condensed matter is elaborated rather

well for neutral (non-charged) molecules. The frequency of bimolecular collisions

was calculated for the first time by Smoluchowski [3]. He considered a dilute

solution of molecules assuming them to be solid spheres with given radii moving

according to the model of continuous diffusion with a given diffusion coefficient.

He obtained a well known result for the frequency of binary collisions of a selected

molecule A with molecules B,

ZA0 ¼ 4pðrA þ rBÞðDA þ DBÞCB ¼ 4pr0DABCB: ð1Þ
In this equation rA and rB are radii of spheres representing molecules A and B,

and DA and DB are diffusion coefficients of molecules-spheres A and B,

respectively, CB is the concentration of molecules B. We call the quantity

r0 = rA ? rB as the collision radius or the distance of the closest approach of

molecules.

Equation (1) was derived under the assumption that at the first contact of spheres

they stick together and ‘‘drop out of the game’’. Thus, Smoluchowski [3] did not

consider re-encounters of the same pair of molecules A and B ([4]; see discussion of

this problem in [5]). Therefore, Eq. (1) gives only the frequency of the first

collisions of the selected molecule A with different molecules B.

It was shown in [4] that in condensed matter, two molecules approaching the

distance r0 may re-encounter (repeatedly approach) at the same distance after some

diffusion walk. To illustrate the role of re-encounters in the bimolecular process, let

us present the results for a simple phenomenological model. Let us denote the

probability that two molecules re-encounter at the distance r0 as pr. This probability

is determined by the kinematics of the molecular diffusion, namely, the mean

displacement length of molecules in the elementary diffusion act and the size of

molecules [5]. The total probability of all re-encounters is

q = pr ? pr
2 ? pr

3 ?_ = pr/(1 - pr). The total number of encounters of two

selected molecules at the distance r0 is n = 1 ? q = 1/(1 - pr). Thus, the total

collision frequency of the selected molecule A with molecules B should be

ZAf ¼ nZA0 ¼ 4preffDABCB: ð2Þ
We introduced an effective collision radius reff, which is n = 1/(1 - pr) times

larger than the true collision radius of spheres, reff. = nr0 [ r0. In addition to the

first collisions with new molecules B, Eq. (2) takes into account all re-encounters of
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the selected molecule A with the same molecule B. A set of all encounters of the

same pair of molecules is called as a collision of two molecules.

The rate of a certain process occurring during bimolecular collisions is measured

in the experiment. The frequency of bimolecular collisions can be, in principle,

found from this rate. The measurement of the bimolecular spin exchange (see

Fig. 1) is quite promising for solving this problem. On the one hand, the spin

exchange rate can be found using methods of electron paramagnetic resonance

(EPR), since this process is characteristically manifested in the shape of the EPR

spectra [2]. On the other hand, this is a rather convenient process for a theoretical

description. In fact, spin exchange (Fig. 1) is not associated with the additional

activation as it takes place in the case of bimolecular chemical reactions or the

reorganization of the medium during the electron exchange.

Exchange of spin states (Fig. 1) occurs under the action of the exchange

interaction between paramagnetic particles A and B. Let us assume that the

exchange interaction is switched on only in a very narrow layer d between spheres

with radii r0 and r0 ? d. Let us denote the probability of the mutual flip-flop of spin

moments during one collision as wex. In the interval {r0, r0 ? d} the exchange

integral for the pair AB is J0 and the average duration of one collision is sc. In this

work we assume that the exchange integral does not depend on the mutual

orientation of colliding paramagnetic particles. Note that the spin density of

paramagnetic particles is not distributed uniformly, so that the exchange integral

might depend on a mutual orientation of two colliding partners. The rotational

diffusion of paramagnetic particles and their relative translational diffusion between

re-encounters tend to average these anisotropic effects in the spin exchange. In the

present paper, we do not consider this motif of anisotropy effects in spin exchange.

More information about this subject can be found, e.g., in refs. [2, 6, 7]. For the

model of the sudden switching of the exchange interaction between paramagnetic

particles during the encounter, the probability of the mutual flip-flop of spins

(Fig. 1) was calculated in a series of works [2, 8–10]:

wex ¼
1

2

J2
0s

2
c

1þ J2
0s

2
c

: ð3Þ

After the first encounter of the pair A and B, the exchange of spin states

according to Fig. 1 occurs with the probability wex and the spin states remain the

same with the probability 1 - wex. However, the spin exchange according to

scheme Fig. 1 can also occur at the re-encounters of the pair. Re-encounters in the

pair lead to the increase in the time se, which colliding spins A and B spend in the

    A↑+B↓=A↓+B↑

|1〉 |2〉

Fig. 1 Scheme of the mutual flip-flop of spins of two paramagnetic particles with spin �. Arrows
indicate the orientations of spin moments of paramagnetic particles before and after the collision.
Notations of the corresponding spin states of the pair, 1j i and 2j i, are given below the scheme
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region {r0, r0 ? d} with the exchange interaction J0. On average this time is

se = nsc. In this situation it seems reasonable to assume that the average probability

of the spin exchange in one collision is given by expression (3) with the replacement

of the average time of one encounter sc by the average summary duration of all

encounters in one collision: se = nsc. However, this assumption is justified only if

in the intervals between re-encounters no spin evolution takes place, and the

quantum coherence of the states of spins 1j i and 2j i is preserved. In the real

situation, this condition is not fulfilled. Therefore in the general case, it is not

possible to allow for the effect of all re-encounters by the simple substitution of the

average time of one encounter by the average summary duration of all encounters

se = nsc in Eq. (3).

To illustrate the effect of the spin decoherence in the intervals between

subsequent re-encounters on the spin exchange efficiency, let us present the

calculation of the probability of the spin exchange during a collision for the

following phenomenological model. Let us denote the probability of the pair of

spins to undergo the repeated contact as pr. Suppose that in the interval between re-

encounters the quantum coherence of states 1j i and 2j i (see Fig. 1) is destroyed, and

to the moment of the beginning of the first and all subsequent re-encounters the state

of the pair of colliding spins can be described completely by the populations of

states 1j i and 2j i. Of course, in the moment of an encounter the exchange interaction

between spins forms the quantum coherence of states 1j i and 2j i, so that in the

moment of ending the encounter spins occur in the quantum coherent state of the

superposition of states 1j i and 2j i.
To calculate in the framework of the model described the total contribution of all

re-encounters of a pair of spins A and B at the collision radius, let us introduce the

matrix V of the probabilities of transitions between states 1j i and 2j i (see Fig. 1)

V ¼ 1� wex wex

wex 1� wex

� �
:

This matrix makes it possible to calculate the change of the populations of states

1j i and 2j i during the time of one encounter as a result of the coherent motion of

two spins under the action of the exchange interaction.

Eigenvalues and eigen states of the matrix V are 1 and 1 - 2wex, w1j i ¼
ð 1j i þ 2j iÞ=

ffiffiffi
2
p

and w2j i ¼ ð 1j i � 2j iÞ=
ffiffiffi
2
p

, respectively. On the basis of eigen

states, the matrix V is

Vr ¼
1 0

0 1� 2wex

� �
: ð4Þ

On the same basis, the states of spins "# and #" are described by vectors u1 ¼
1; 1f g=

ffiffiffi
2
p

and u2 ¼ 1;�1f g=
ffiffiffi
2
p

. The probability that the spin exchange occurs as

a result of the first encounter of two paramagnetic particles, after which these

particles are separated in the volume of the solution not undergoing any re-

encounters, is: p1 ¼ 1� prð Þ u2jVrju1h i. The probability of the spin exchange as a

result of the first encounter and one re-encounter is: p2 ¼ 1� prð Þ
u2jVrprVrju1h i ¼ 1� prð Þ u2jprV

2
r ju1

� �
. If k encounters occur, the probability of

the spin exchange is pk ¼ 1� prð Þ u2jpk�1
r Vk

r ju1

� �
.
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Summing the contribution of all possible implementations of re-encounters, we

find the probability of the mutual flip-flop of spins of the pair of paramagnetic

particles A and B in one collision:

pt ¼
X

pk ¼
nwex

1þ 2ðn� 1Þwex

¼ 1

2

nJ2
0s

2
0

1þ nJ2
0s

2
0

: ð5Þ

The comparison of Eqs. (3) and (5) shows that under the approximation of

sudden collisions for the considered model, the efficiency of the spin exchange of

the pair of molecules in one collision is determined by the effective time:

seff = (Hn)sc,

Pex ¼
1

2

J2
0s

2
eff

1þ J2
0s

2
eff

: ð6Þ

It should be noted that in the considered phenomenological model, the effective

time determining the efficiency of the spin exchange is less than the sum of the

times of residence of two spins in the exchange interaction region on average in one

collision, seff = (Hn)sc \ nsc. In the general case, when in the interval between re-

encounters of spins in the pair the quantum coherence between states 1j i and 2j i is

destroyed only partially, the effective time of the spin exchange is supposed to be in

the limits (Hn)sc B seff B nsc.

For particles with spin � in the half of encounters the spins of colliding particles

are oriented similarly, A: ? B: = A: ? B:, and therefore no spin exchange

occurs. With allowance for this, the average efficiency of the spin exchange in one

encounter of A and B is the half of Pex. We note that in EPR experiments in dilute

solutions of paramagnetic particles, the EPR spectrum of separate spins, but not the

spectrum of collided pairs, is measured. Therefore, the difference of the populations

of the states of one spin with two different spin projections is observable. In the

kinetic equations for density matrices of single spins, not Pex/2, but Pex, serves as

the efficiency of the spin exchange in one collision [see [2], Eq. (I.143)].

Within the model of the sudden switching of the exchange interaction at the

collision radius, the rate constant of the spin exchange is:

Kex ¼ Pex4pr0DAB: ð7Þ
This rate constant can be written in the form of the Smoluchowski equation [see

Eq. (1)], if the effective radius of the spin exchange reff = Pexr0 is introduced. Then

Eq. (7) can be written in the form [cp. with Eq. (1)]:

Kex ¼ 4preffDAB:

Equations (3–7) are widely used for calculating the rate constant of the spin

exchange. Under the condition of sufficiently strong exchange interaction at the

collision radius, when J0seff [ 1, the rate constant of the spin exchange (7) reaches

its maximum value, which is the half of the rate constant of the first encounters [see

Eq. (1)]:

Kexmax ¼ ð1=2Þ4pr0DAB: ð8Þ
This situation is called the case of the strong spin exchange.
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Expressions (3–8) show that under the approximation of sudden switching of the

exchange interaction only at the collision radius, the effective radius of the spin

exchange is less than half of the collision radius reff = r0Pex B (1/2) r0. In real

systems, the exchange interaction may cause spin exchange also at distances larger

than the collision radius, and the spin exchange may occur not only in the moments

of the closest approach of particles, but also at intervals between the re-encounters.

As a result, the effective radius of the spin exchange can be larger than the collision

radius. To take into account the extended character of the exchange interaction, it is

necessary to know the dependence of the exchange integral on the distance between

paramagnetic particles. It is expected that under good approximation, the exchange

integral decreases with the increase in the distance r between paramagnetic particles

according to the exponential law (see, e.g., [2])

JðrÞ ¼ J0 expf��ðr � r0Þg: ð9Þ
Here, æ characterizes the slope of the decay of the exchange integral with the

increase in the distance between spins A and B.

For neutral paramagnetic particles, the constant of the spin exchange rate with

allowance for spatially extended character of the exchange interaction (9) and all re-

encounters was calculated in [11, 12]. For particles with spin �, the spin exchange

effective radius is

reff ¼
r0

2
þ Re

1

�
ln

z0

2

� �
þ C � C01

h i	 

; ð10Þ

z0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iJ0

DAB�2

r
;C � 0:57721566. . . Euler constant;

C01 ¼
p
2

N1 z0ð Þz0�r0 � 2N0 z0ð Þ
J1 z0ð Þz0�r0 � 2J0 z0ð Þ

:

Here, Jk and Nk are the Bessel functions of the first and second kind.

To illustrate the behavior of the effective radius of the spin exchange with the

increase in the exchange integral, Fig. 2 shows this dependence of reff for the model

situation calculated using Eq. (10).

In Fig. 2, the abscissa for the exchange integral uses the log scale to present the

variation of the exchange integral J0 in the wide interval {108 rad/s, 1016 rad/s}. On

the basis of Fig. 2, it is possible to state the following. With the increase in the

exchange integral the effective radius of the spin exchange increases. In the region

of the strong exchange interaction, when |J0|/(DAB æ2) [ 1,

reff �
r0

2
þ 1

2�
ln

J0j j
D�2

� �
þ 2C

� �
: ð11Þ

We note that in the model of sudden collisions disregarding the extended

character of the exchange interaction, the effective radius of the spin exchange [see

Eqs. (5–7)] tends to the limiting value r0/2 with the increase in the exchange integral

value at the collision radius. Spin exchange with allowance for the extended

exchange interaction is characterized by the effective radius of the spin exchange

reff [Eq. (10)], which cannot be presented as a product of the collision radius r0 and
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the probability Pex of the spin exchange in one collision, reff = Pexr0. To confirm

this, it suffices to indicate that according to Eq. (10) and Fig. 2, reff can also be

larger than r0, while in the model of sudden collisions Pexr0 B r0/2.

With a decrease in a value of æ, the volume of the region, in which the spin

exchange can occur, increases. Figure 2 demonstrates the increase in the effective

radius of the spin exchange with a decrease in the value of æ. With the increase in

the diffusion coefficient of molecules, the effective time of collision of molecules

decreases which should decrease the efficiency of the spin exchange. Equation (10)

confirms the expected dependence of the effective radius of the spin exchange on

the diffusion coefficient.

Thus, the theory of binary collisions between neutral molecules, including the

theory of spin exchange, is developed rather well (see, e.g., [1, 2, 8, 9]) and applied

successfully (see, e.g., [2, 13]).

The situation for charged particles is studied much less, and the theoretical

analysis of the spin exchange during the collisions of charged paramagnetic

particles is a topical problem (see, e.g., [2, 13]). The frequency of the first

encounters for charged particles was calculated by Debye [14]. The rate constant of

the first encounters is

K ¼ f 4pr0DAB;

f ¼ r0

Z1

r0

exp
UðrÞ
kT

� �
dr

r2

8<
:

9=
;
�1

;
ð12Þ

where U(r) is the potential energy of the electrostatic interaction of charged

molecules A and B. The expression for f is given for the case when molecules A and
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Fig. 2 Dependence of reff [Eq. (10)] on the exchange integral value J0 at the collision radius calculated
for two values of the slope æ of the exchange integral decay with the increase in the distance between two
colliding paramagnetic particles: fast decay of the exchange integral, æ = 3 9 108 cm-1 (thin curve), and
relatively slow decay of the exchange integral æ = 108 cm-1 (thick curve). Calculations were performed
for r0 = 7 9 10-8 cm, DAB = 1.38 9 10-5cm2/s. Note that in this case the limiting value of the effective
radius expected in the framework of the sudden collisions model is 3.5 9 10-8 cm
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B are simulated by spheres with the same radii [15]. In the case of molecules of like

charge, the Coulomb repulsion decreases the rate constant of binary collisions in

comparison with the situation for neutral molecules, i.e., f \ 1, while in the case of

oppositely charged particles f [ 1. The Coulomb interaction affects not only the rate

constant of bimolecular collisions, but also the efficiency of the spin exchange, since

it changes the average time of an encounter and the average time between re-

encounters, average number of re-encounters and also the trajectory of the diffusion

walk of a pair of molecules in the exchange interaction region.

If the electrostatic interaction has the form U(r) = q1q2/(er), where q1 and q2 are

charges of two colliding particles and e is the dielectric permittivity of the medium,

then for particles of like charge the factor f [Eq. (12)] is

f1 ¼
ROn

r0

exp �ROn=r0ð Þ
1� exp �ROn=r0ð Þ ; ð13Þ

where ROn = |q1q2|/(ekT) is the Onsager radius [15]. The Coulomb interaction

energy at the Onsager radius is equal to the thermal energy kT. At room tempera-

tures for single-charged particles for water (e & 81), the Onsager radius

ROn & 7 9 10-8 cm. For a solution with e & 10 we have ROn & 56 9 10-8 cm.

Thus, one can expect that in many cases the Onsager radius is much larger than the

collision radius, i.e., ROn [ r0. In this situation,

f1 � ROn=r0ð Þexp �ROn=r0ð Þ: ð14Þ
The factor (14) reaches its maximum value e-1&0.37 at ROn/r0 = 1. At (ROn/

r0) [ 3 the factor f1 � 0.1. The rate constant of the first encounters for particles of

like charge (12) has the form:

K ¼ 4pDABROnexp �ROn=r0ð Þ: ð15Þ
The effective collision radius of particles of like charge is given by Eq. (16) and

according to the above estimates this radius is expected to be typically less than the

collision radius r0,

reff ¼ ROnexp �ROn=r0ð Þ\r0: ð16Þ
For oppositely charged particles, the factor f [Eq. (12)] has the form:

f2 ¼
ROn=r0

1� exp �ROn=r0ð Þ : ð17Þ

According to the above estimates, the factor f2 in good approximation can be

considered as:

f2 � ROn=r0: ð18Þ
In this situation, the rate constant of the first encounters of oppositely charged

particles (12) has the form:

K ¼ 4pDABROn; ð19Þ

and the effective meeting radius of oppositely charged particles is close to the

Onsager radius
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reff ¼ ROn [ r0: ð20Þ
This is an expected result. In fact, oppositely charged particles reach the collision

radius, if they approach the Onsager radius.

At present, in the analysis of the experimental data on spin exchange between

charged paramagnetic particles in dilute solutions, it is conventionally assumed

that the rate constant can be described using Eq. (12) with the additional factor

Pex, which describes the efficiency of the spin exchange during a collision [2,

16]:

Kex ¼ Pexf 4pr0DAB: ð21Þ
In the approximation of the sudden switching of the exchange interaction, Pex is

given by Eq. (6). Within this approach, determining Kex from the EPR experiments

and calculating Pex, it is possible to find the rate of binary collisions of charged

particles. It is necessary to take into account that the Coulomb interaction between

colliding partners affects the average time of an encounter at the collision radius. In

comparison with the analogous neutral molecules, the collision time seff for particles

of like charge should be less than for neutral particles, but for oppositely charged

particles it should be larger.

The effective encounter time seff can be estimated as follows. In the

thermodynamic equilibrium, the flow of pairs of particles into the interaction

region Zþ ¼ f 4pr0DABCB should be equal to the flow of pairs from the collision

region Z� ¼ vexp �U r0ð Þ=kTð ÞCB=teff . Here, v = 4pr0
2d, v exp (-U(r0)/kT)CB is

the number of pairs in the region of the exchange interaction. From the condition of

the equality of these flows, Z? = Z- (the condition of detailed balance), we find the

effective collision time of the charged particles in the region between two spheres

with radii r0 and r0 ? d

seff ¼
r0d

fDAB

exp �Uðr0Þ
kT

� �
: ð22Þ

If the electrostatic interaction has the form U(r) = q1q2/(er), the effective

encounter time of charged particles in the interaction region can be estimated using

the values of factor f presented, e.g., in Eqs. (14, 18). For particles of like charge,

using Eqs. (14, 22) we obtain:

seff ¼
r0d
DAB

r0

ROn

\
r0d
DAB

: ð23Þ

For oppositely charged particles, using Eqs. (18, 22), we obtain

seff ¼
r0d
DAB

r0

ROn

exp
ROn

r0

� �
[

r0d
DAB

: ð24Þ

In fact, the exchange interaction not only acts at the approach to the collision

radius, but spin exchange can also occur at larger distances between particles. This

can be of especially high importance for particles of like charge. In this case the

Coulomb repulsion hampers the maximum approach of spins and therefore the spin

exchange at large distances between particles becomes important. This means that

the model of the sudden switching of the exchange interaction might be a poor basis

Spin Exchange Between Charged Paramagnetic Particles 919

123



for the analysis of spin exchange between charged paramagnetic particles. In

Sect. 2.4, we will consider this issue.

1.2 The Aim of This Work

In the brief review presented, it was shown that there exists a rather well-developed

theoretical description of the bimolecular spin exchange in dilute solutions of the

neutral paramagnetic particles. There are analytical solutions for model situations

which are used successfully when interpreting experimental data.

However, the theory is much less developed in the case of the bimolecular spin

exchange between charged paramagnetic particles. In this case, new important

physical parameters appear which characterize the electrostatic interaction and

affect the bimolecular spin exchange rate: the Debye screening radius, Onsager

radius and the dielectric permittivity of the medium.

In the case of charged as well as neutral particles, the constant of the spin

exchange rate can be expressed in terms of the effective exchange radius:

Kex ¼ 4preffDAB: ð25Þ
The effective radius reff combines the effects from the parameters of the

exchange interaction, Coulomb interaction between particles and molecular-kinetic

parameters of the mutual diffusion motion of particles.

According to the existing theoretical ideas, the calculation of the effective radius

of the bimolecular processes is reduced to solving equations for the operator of the

efficiency of a collision [1, 2, 11, 12, 17, 18]. The aim of this work is to develop the

theory of spin exchange between charged paramagnetic particles.

In Sect. 2, we present the kinetic equations for the spin density matrices of

paramagnetic particles taking into account their binary collisions. These kinetic

equations provide the equations for the operator of the efficiency of the spin

exchange during the collision of charged particles. The equations obtained cannot

be solved analytically. Therefore, the effective radius of the spin exchange and the

constants of the spin exchange rate were calculated numerically. The effective

radius of the spin exchange is analyzed as a function of the molecular diffusion

coefficient, the electrostatic interaction parameters of the electrolyte and exchange

interaction parameters. To illustrate the potential of the theory developed in this

work, we have used data taken from the literature [16]. It is demonstrated that the

developed theory provides a basis for the analysis of experiment.

2 Theory of Bimolecular Spin Exchange Between Charged Paramagnetic
Particles

2.1 Mathematical Apparatus

Let us consider the dilute solution of charged particles with spins �. Let us assume

that the concentration of spins is sufficiently low to limit ourselves to taking into

account collisions of two spins and ignore the probability of the simultaneous
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collisions of three and more spins. This assumption is justified, if the concentration

of spins C satisfies the condition (4p/3)reff
3 C � 1.

If concentration C is measured in M/L units, this condition is reduced to

C � 1 M. When this condition is fulfilled, the set of all spins can be divided into an

ensemble of separate particles and another of pairs of particles with the interaction

inside the pairs. Free particles when approaching may form pairs or pairs decay, i.e.,

spins move from one ensemble into another. The relative motion of partners in the

pair randomly modulates the interaction between spins. In addition, the Coulomb

interaction between charged particles repulses like charges and attracts opposite

charges that affects the probability of their approach to the distance of the effective

spin–spin interaction. The theory is developed within the assumption that the

change of the spins states of interacting particles does not affect their diffusion

motion. Under this assumption, we consider the distance r between partners in the

pair as the external classical parameter for the quantum–mechanical problem about

the spin evolution of an ensemble of pairs. The relative motion of partners in the

pair is described using the model of continuous diffusion.

In [1, 2, 5, 11, 12, 17, 18], a formalism was proposed, using which the kinetic

equations were derived for one-particle spin density matrices rA and rB of the

subsystems A and B with allowance for binary collisions:

dr̂AðtÞ
dt

¼ � i

�h
ĤA; r̂A


 �
� CATr2

^̂PAAr̂A � r̂A

h i
� CBTrB

^̂PABr̂A � r̂B

h i
;

dr̂BðtÞ
dt

¼ � i

�h
ĤB; r̂B


 �
� CBTr2

^̂PBBr̂B � r̂B

h i
� CATrA

^̂PABr̂A � r̂B

h i
:

ð26Þ

In these equations, PAA, PBB and PAB denote operators of collisions (more

exactly, superoperators) determining the efficiency of the spin exchange in

collisions of particles in different possible combinations AA, AB and BB in the

pair. Let us consider the process of collisions of particles of different kinds, A ? B.

Equations for the operator PAB are derived from the following considerations.

Let us consider a pair of colliding particles A and B. Its spin Hamiltonian in the

external constant magnetic field H has the form:

Ĥ r~ð Þ ¼ Ĥ rð Þ ¼ Ĥ0 þ �hJðrÞŜAŜB;

Ĥ0 ¼ ĤA þ ĤB; JðrÞ ¼ J0 exp ��ðr � r0Þf g;
ĤA ¼ gAbHŜAZ ¼ �hxAŜAZ; ĤB ¼ gBbHŜBZ ¼ �hxBŜBZ:

ð27Þ

Let us divide the ensemble of all pairs into subensembles with a given distance r

between partners in the pair A and B. The kinetic equation for the partial density

matrix of the isolated pair of the pairs with a given r, q(r, t), has the form

oq̂ðr~; tÞ
ot

¼ � i

�h
½ĤðrÞ; q̂ðr~; tÞ� þ L̂ r~ð Þq̂ðr~; tÞ: ð28Þ

The last term in (28) is the divergence of the flow of the partial density matrix.

The summary flow j into the subensemble with the given r consists of two

components: the equilibration of the concentrations according to the Fick law and

the motion under the action of the forces of the Coulomb interaction:
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j~¼ �DABrq r~; tð Þ þ q r~; tð Þm~ r~ð Þ;

v~ r~ð Þ ¼ lF~ r~ð Þ ¼ �DAB

kT
rU r~ð Þ;U r~ð Þ ¼ U rð Þ ¼ qAqB

er
e�r=rD ;

ð29Þ

where qA and qB are charges of partners in the pair, rD is the Debye screening

radius, DAB is the coefficient of mutual diffusion of A and B, k is the Boltzmann

constant, T is the temperature and e is the dielectric permittivity of a solution.

Within the model of continuous diffusion we have:

L̂ r~ð Þ ¼ L̂ rð Þ ¼ DAB

o2

or2
þ 2

r

o

or

� �
� DABqAqB

ekTr2
1þ r

rD

� �
o

or
� r

r2
D

� �
e�r=rD : ð30Þ

It is well known from statistical mechanics that the change of the one-particle

spin density matrix can be expressed in terms of the pair density matrix. In the

considered problem for the one-particle density matrix, e.g., particles A, with

allowance for the pair interaction only with particles B, VAB(r), we have the

following equation [19]:

dr̂AðtÞ
dt

¼ � i

�h
ĤA; r̂AðtÞ

 �

� 1

V
TrB

XNB

K¼1

Z
i

�h
V̂ABðr~KÞ; q̂2ðr~K; tÞ

 �

dr~K: ð31Þ

Integration is performed over all possible positions of the r-th particle B with

respect to the particle A, summation is performed over all particles B, and TrB

means convolution over spins states of particles B. In the thermodynamic limit

when V, NB ? ? so that NB/V ? CB, with allowance for the fact that all particles

B on average give the same contribution in collisions with particles A, we have

dr̂AðtÞ
dt

¼ � i

�h
ĤA; r̂AðtÞ

 �

� CBTrB

Z
i

�h
V̂ABðr~Þ; q̂2ðr~; tÞ

 �

dr~: ð32Þ

In the general case the change of the two-particle density matrix is ‘‘caught on’’

the three-particle density matrix. But in the binary collisions approximation, we

ignore the contribution of triple collisions. Therefore in (32), one can use the density

matrix q(r, t) as a two-particle density matrix q2(r, t) found from the solution of Eq.

(28). To obtain the kinetic Eq. (26), the pair density matrix in Eq. (32) is expressed

in terms of one-particle matrices, and to this end the solution of Eq. 28) is sought for

in the Liouville representation in the form (see [1, 19])

q̂ðr; tÞ � ^̂
Gðr; tÞr̂AðtÞ � r̂BðtÞ: ð33Þ

The direct product rA(t) 9 rB(t) is the matrix 4 9 4. We consider it as a

16-vector elongated into the line over columns, and (33) as the action of a certain

linear correlator ‘‘superoperator’’ G(r, t) (matrices 16 9 16) on this vector.

Substituting (33) into (28) and taking into account that in (28) the interaction of a

selected pair is taken into account explicitly, we finally obtain the equation for G.

Using Eq. (33), the left-hand side of Eq. (28) is presented in the form:
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dq̂ðr; tÞ
dt

¼ d
^̂
Gðr; tÞ

dt
r̂A � r̂B þ ^̂

Gðr; tÞ dr̂A

dt
� r̂B þ ^̂

Gðr; tÞr̂A �
dr̂B

dt
:

According to the arguments presented above, in the time scale of the ‘‘lifetime’’

sp of the pairs we use the approximation:

dr̂AðtÞ
dt

¼ � i

�h
ĤA; r̂AðtÞ

 �

;
dr̂BðtÞ

dt
¼ � i

�h
ĤB; r̂BðtÞ

 �

:

This approximation means that in the time scale of a collision of two molecules,

we ignore the change of the one-particle density matrix due to binary collisions,

since the binary collisions change the one-particle matrix at the times of the ‘‘mean

free path’’ between binary collisions.

From (28), we obtain equation for the correlator G(r, t)

o
^̂
Gðr; tÞ

ot
¼ ^̂

L
^̂
Gðr; tÞ þ ^̂

WðrÞ ^̂Gðr; tÞ þ ½ ^̂Q0;
^̂
Gðr; tÞ�; ð34Þ

where ^̂WðrÞ ¼ iJðrÞ ŜAŜB

� �tr�1̂4 � 1̂4 � ŜAŜB

� �h i
,

^̂
Q0 ¼ i

�h Ĥtr
0 � 1̂4 � 1̂4 � Ĥ0


 �
.

Here Htr means transposed operator.

Here, all operators (with one hat) are given in the Gilbert space of the pair of

spins and 1̂4 is the unity operator there. In the stationary regime, at times t � sp,

G(r,t) satisfies stationary equation

^̂
LðrÞ ^̂GðrÞ þ ^̂

WðrÞ ^̂GðrÞ þ ½ ^̂Q0;
^̂
GðrÞ� ¼ 0: ð35Þ

Let us formulate the boundary conditions for the correlator G(r). When the

partners in the pair move apart, the correlation between their spin states should

weaken [19]. From this we have the first boundary condition:

lim
r!1

^̂
GðrÞ ¼ ^̂

116: ð36Þ

Assuming that at the radius of the closest approach the total flow of pairs of spins

is zero, we have second boundary condition j(r = r0) = 0, or

o
^̂
Gðr0Þ
or

¼ qAqB

ekTr2
0

1þ r0

rD

� �
e
�r0

rD
^̂
Gðr0Þ: ð37Þ

The superoperator
^̂
P (impact operator) describes the change of the pair density

matrix in the interaction region and, according to Eqs. (32, 33), is determined by the

expression:

^̂
PAB ¼

Z
^̂

WðrÞ ^̂GðrÞdr~: ð38Þ

Substituting Eqs. (33), (34), (38) into (32) and repeating all these expressions for

the cases of collisions of particles of the same kind, we come to the kinetic

equations for spin density matrices [Eq. (26)].

The coefficients of kinetic equations give the rate constants of the binary process

of the spin exchange. With these coefficients, one can determine the effective radius

of the spin exchange (21).
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Thus, these relations are the mathematical apparatus for calculating the efficiency

of binary collisions. In the situation considered, the kinetic equations cannot be

solved analytically, and it is necessary to perform numerical calculations. The

algorithm of the numerical calculations is given below.

2.2 Algorithm of the Numerical Calculation of the Effective Radius of Spin

Exchange

The substitution x = r/rD transforms the boundary value problem (32) and the

boundary conditions (33) and (34) into the dimensionless form:

^̂
G00xx þ

2

x

^̂
G0x � f 1þ 1

x

� �
^̂
G
0
x �

^̂
G

� �
e�x

x
þ ^̂w0e� ~�x ^̂

Gþ ½ ^̂q0;
^̂
G� ¼ 0; ð39Þ

^̂w0 ¼
r2

D

D
^̂

W r0ð Þ; ^̂q0 ¼
r2

D

D

^̂
Q0; f ¼ qAqB

erDkT
; ~� ¼ �rD;

lim
x!1

^̂
GðxÞ ¼ ^̂

116;
o

^̂
G x0ð Þ
ox

¼ f
1þ x0

x2
0

� �
e�x0 ^̂

Gðx0Þ; x0 ¼ r0=rD:

The problem (39), in turn, is transferred to finite interval [0,1] by the fractional-

linear transformation y = 1 - x0/x and takes the form:

ð1� yÞ4

x2
0

^̂
G
00
yy� f

1� yð Þ3

x2
0

þ 1� yð Þ2

x0

" #
^̂
G
0
y�

^̂
G

" #
1� y

x0

e�
x0

1�yþ ^̂w0e�
�r0
1�y

^̂
Gþ ½ ^̂q0;

^̂
G� ¼ 0;

ð40Þ

lim
y!1

^̂
GðyÞ ¼ ^̂

116;
o

^̂
G 0ð Þ
oy
¼ f 1þ rD

r0

� �
e
�r0

rD
^̂
Gð0Þ;

suitable for the numerical solution by the finite-differential method.

The impact operator at this substitution has the form:

^̂
PAB ¼ 4pDAB

r3
0

r2
D

^̂w0

Z1

0

^̂
GðyÞ
ð1� yÞ4

e
� �r0
ð1�yÞdy: ð41Þ

Equation (33) contains a commutator ½ ^̂q0;
^̂
G� that makes it inconvenient for the

standard matrix calculations. Therefore in (40), let us use again the Liouville

representation. Let us denote as eG the vector with the dimensionality 256 9 1

obtained by the elongation of the matrix
^̂
G over the columns in a line, and

denote vectors obtained in the same manner from matrices
^̂
116 and

^̂
016 as ~116

and ~016.

Let us introduce ~l, ~k, ~m, and then ~u and ~m according to formulas
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~lðyÞ ¼def ð1� yÞ4

x2
0

^̂
116 � ^̂

116; ~kðyÞ ¼def�f
1� yð Þ4

x3
0

þ 1� yð Þ3

x2
0

" #
e�

x0
1�y

^̂
116 � ^̂

116;

~mðyÞ ¼def
f

1� y

x0

e�
x0

1�y
^̂
116 � ^̂

116 þ ^̂
116 � ^̂w0e�

~�x0
1�y þ ^̂

116 � ^̂q0 � ^̂qtr
0 �

^̂
116;

~u yð Þ ¼ ~k yð Þ=~l yð Þ; ~v yð Þ ¼ ~m yð Þ=~l yð Þ:

ð42Þ

Equation (40) with allowance for (42) takes the final form:

~G
0 0

yy þ ~u ~G0y þ ~v ~G ¼ ~016;

~Gð1Þ ¼ ~116; ~G0yð0Þ ¼ fð1þ rD=r0Þe�r0=rD ~Gð0Þ;
ð43Þ

where matrices ~u and ~m have the dimensionality 256 9 256.

Let us write the difference scheme for (42) with N ? 1 sites equidistant over h:

~Gk�1 þ ð~vkh2 � ~ukh� 2
^̂
116 � ^̂

116Þ ~Gk þ ð ^̂116 � ^̂
116 þ h~ukÞ ~Gkþ1 ¼ 0; k ¼ 1;N � 1;

~G0 ¼ ~G1= 1þ hfð1þ rD=r0Þe�r0=rD

h i
; ~GN ¼ ~116:

ð44Þ
When solving the problem numerically, it appeared to be useful to perform the

additional transformation [18], namely, to transform Eq. (40) to the Q0 operator

eigen basis. Due to this procedure, all superoperators in Eq. (44) become of the

decomposable (step-matrices) form. As a result, the solution of the problem (44) is

reduced to the finding of the 16 vectors of the 16-th dimension instead of finding one

256-th dimension vector.

As a result, the implementation of the scheme (44) demonstrated good

convergence. The obtained solution was substituted into the formula for the impact

operator (41), and the integral in it was calculated according to the Simpson formula.

2.3 Results of the Calculation of the Effective Radius of Spin Exchange

for Charged Paramagnetic Particles with Spin �

Using the above equations, reff for charged particles with spin � for different values

of J(r0) and æ Eq. (9) was found.

Figure 3 illustrates the dependence of reff radius on J(r0). The analysis of curves

given in Fig. 3a–c shows that the effective radius of the spin exchange increases

with a decrease in the coefficient of the mutual diffusion of paramagnetic particles.

This is explained by the fact that with a decrease in the mobility of molecules a time

of the stay of two colliding particles in the region of the exchange interaction

increases. The effective radius of the spin exchange for oppositely charged particles

is larger than that for neutral particles, and the effective radius of the spin exchange

for particles of like charge is less than that for neutral particles (see Fig. 3). This is

an expected result qualitatively. But now we can calculate quantitatively the effect

of the Coulomb interaction of charged particles on the spin exchange radius. In the

case of neutral particles the effective radius of the spin exchange reff reduces to the

linear dependence on ln|J0| with an increase in the exchange integral J0 on the
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collision radius (see Eq. (11)). The numerical calculations also showed that for

charged particles the effective radius of the spin exchange reff reduces to the linear

dependence on ln|J0| in the region of strong exchange (see Fig. 3). If the effective

radius of the spin exchange is larger than one-half of the closest approach radius, the

situation of the strong spin exchange takes place [cf. Eq. (9)]. Let us assume that the

situation of the strong spin exchange is implemented, when the action of the

exchange interaction, i.e., the product of the exchange integral J(reff) by the time seff

of residence of the particles in the interaction region is on the order of 1 (Note that

the exchange integral is given in the units of rad/s). From this condition,

J0 exp ��reffð Þseff & 1, we obtain the estimate of the effective radius of the strong

spin exchange reff � 1=�ð Þ lnðJ0seffÞ. In fact, seff in turn can depend on reff, but this

dependence is not exponential, it could be, e.g., quadratic seff � r2
eff=DAB or linear

seff � reff=�DABor independent seff � =�2DAB.

The effective time of the stay of particles in the region of the effective exchange

interaction depends on æ. The faster the decay of the exchange integral, the less is

the region of the effective interaction and, as a result, the less is the effective radius

of spin exchange. This qualitative expectation is completely confirmed by the

numerical calculations (see Fig. 4).

In the case of the spin exchange between charged particles, the Debye screening

radius is an important parameter. With a decrease in the Debye screening radius, the

role of the Coulomb interaction should decrease and the effective radius of the spin

exchange should tend to the radius of the spin exchange for neutral particles. We

performed numerical calculations, which completely confirmed these qualitative

statements. Figure 5a, b illustrates that at rD = 1.6 9 10-8 cm (when the Debye

screening radius is much less than the collision radius), the effective radius of the

spin exchange between charged particles almost coincides with the radius of the

spin exchange for neutral particles. In the other example (see Fig. 5c, d), when

rD = 10-7 cm is nearly two times larger than the collision radius r0 = 6 9 10-8

cm, which we selected for these calculations, the Coulomb interaction quite strongly

affects the radius of the spin exchange in comparison with the case of neutral

particles. Curves (a, c) correspond to æ = 108 cm-1; curves (b, d) correspond to

æ = 3 9 108 cm-1.

The numerical calculations above show that at rather high values of the

coefficient of mutual diffusion of particles and rather large slope of the exchange

integral decay, the spin exchange is no longer strong even for collisions of

oppositely charged particles, which can be kept in the interaction region by the

Coulomb attraction for a relatively long time.

b Fig. 3 Dependence of the effective radius of spin exchange on the exchange integral at the collision
radius for different values of the diffusion coefficient of paramagnetic particles in a case of like charge
(thin solid curves), for neutral particles (thick dotted curve) and for oppositely charged particles (thick
solid curve). Calculations were performed for the following parameter values: r0 = 6 9 10-8 cm,
æ = 3 9 108 cm-1, e ¼ 20, rD = 10 9 10-8 cm, a DAB = 1.38 9 10-5 cm2/s, b DAB = 10-6 cm2/s,
c DAB = 10-7 cm2/s. Abscissa for the exchange integral J0 uses the log scale to present the variation of
the effective radius of spin exchange in the wide interval {109 rad/s, 1013 rad/s}
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Tables 1 and 2 summarize the calculated values of the effective radius of spin

exchange for charged paramagnetic particles for a series of selected values of

parameters, which affect the value of this radius.

Data given in these tables may be useful as references during the interpretation of

experimental data. Data presented in these tables and Figs. 3, 4, 5 give an idea about

the scale of the possible variations of the effective radius of the spin exchange

during the variation of the molecular-kinetic parameters, and also parameters which

characterize the exchange and electrostatic interaction between charged paramag-

netic particles.
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Fig. 4 Dependence on J(r0) of the effective radius of spin exchange between paramagnetic particles of
like charged (a) and oppositely charged paramagnetic particles (b) for two values of the slope of the
exchange integral decay with the increase in the distance between colliding paramagnetic particles:
æ = 108 cm-1 (solid curves), æ = 3 9 108 cm-1 (dotted curves). Calculations were performed for the
following parameter values: r0 = 6 9 10-8 cm, e = 20, rD = 10 9 10-8 cm, DAB = 1.38 9 10-5 cm2/s
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Fig. 5 continued
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2.4 Approximate Estimates of the Effective Radius of the Spin Exchange

Between Charged Particles

In this work we developed a theory that makes it possible to calculate the effective

radius of spin exchange between charged paramagnetic particles. The knowledge of

this radius makes it possible also to calculate the rate constant of the spin exchange

[see Eq. (25)]. It is of interest to compare the results of the exact calculations with

approximate estimates. In the model of sudden switching of the exchange

interaction, the effective radius of spin exchange between charged paramagnetic

d
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Fig. 5 Comparison of effective radii of spin exchange for charged and neutral particles at different
values of the Debye screening radius: a, b rD = 1.6 9 10-8 cm, c, d rD = 10 9 10-8 cm. Other
calculation parameters are: r0 = 6 9 10-8 cm, e = 20, DAB = 10-5 cm2/s. Abscissa for the exchange
integral uses the log scale to present the variation of the effective radius of spin exchange in the wide
interval {109 rad/s, 1013 rad/s}. Thin solid curves present the data for particles of like charge, thick dotted
curves present data for neutral particles and thick solid curves are data for oppositely charged particles

Table 1 Values of the effective radius (in 10-8 cm units) of spin exchange between oppositely charged

particles for a selected set of parameters of exchange and electrostatic interaction, and diffusion

coefficient

J0, rad/s 1010 1011 1012 1013

æ, cm-1 108 3 9 108 108 3 9 108 108 3 9 108 108 3 9 108

D, cm2/s 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6

e = 20

rD = 2A 1.34 3.81 0.18 2.86 3.81 4.74 2.86 3.36 4.74 5.88 3.36 3.65 5.88 7.03 3.65 4.02

rD = 10A 5.33 5.84 3.5 5.63 5.84 6.30 5.63 5.67 6.30 7.04 5.67 5.78 7.04 7.89 5.78 5.94

e = 81

rD = 2A 1.88 3.78 0.14 2.69 3.78 4.73 2.69 3.3 4.73 5.88 3.3 3.61 5.88 7.03 3.61 3.99

rD = 10A 2.01 4.30 0.34 3.51 4.30 5.13 3.51 3.89 5.13 6.17 3.89 4.15 6.17 7.25 4.15 4.48

The distance of the closest approach r0 = 6 9 10-8 cm
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particles is conventionally estimated as reff = f Pex r0 [see Eq. (21)] [2, 16]. In this

expression, f is given by Eq. (12), and the efficiency of the spin exchange Pex is

given by Eq. (6), in which time s is used as the effective collision time [Eq. (22)]. In

this estimate, extended character of the exchange interaction is ignored, and it is

considered that the exchange interaction is switched on suddenly only in a narrow

layer between spheres with radii r0 and r0 þ d. We studied to what extent the

considered approximation is applicable for calculation of the effective radius of spin

exchange between charged paramagnetic particles. Figure 6 shows the results of

calculations according to formula reff ¼ fPexr0 and calculations using the consistent

theory of spin exchange for particles of like charge and oppositely charged particles

developed above.

It follows from Fig. 6 that the approximation reff ¼ f Pexr0 Eq. (21) gives

satisfactory values of the effective radius of the spin exchange between

oppositely charged paramagnetic particles in nonviscous solution. In the case of

opposite charges of colliding partners, the approximate results deviate noticeably

only in viscous solutions with low diffusion coefficients and/or strong exchange

integral (compare Fig. 6a–c). However, for particles of like charge it is seen

(Fig. 6) that the approximation reff ¼ f Pexr0 considerably underestimates the

effective radius of the spin exchange. We interpret the last statement in the

following way. When particles have like charge the Coulomb repulsion strongly

reduces the collisions with the closest approach, f1 � 1 [see Eq. (13)]. In this

situation the exchange interaction at distances between particles more than the

collision radius r0 give an essential contribution to the spin exchange efficiency.

This contribution is taken into account in the calculations using the consistent

theory developed in this work and not when the approximation reff ¼ f Pexr0 is

used.

Thus the discrepancy between the effective spin exchange radii calculated in the

framework of the consistent theory and in the framework of the sudden collision

approximation arises due to an extended character of the exchange interaction

[Eq. (9)].

Table 2 Values (in 10-8 cm units) of the effective radius of spin exchange between particles of like

charge for a selected set of parameters of exchange and electrostatic interaction, and diffusion coefficient

J0, rad/s 1010 1011 1012 1013

æ, cm-1 108 3 9 108 108 3 9 108 108 3 9 108 108 3 9 108

D, cm2/s 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6 10-5 10-6

e = 20

rD = 2A 0.95 3.72 0.09 2.39 3.72 4.72 2.39 3.18 4.72 5.88 3.18 3.53 5.88 7.03 3.53 3.94

rD = 10A 0.07 1.6 0.004 0.27 1.6 3.12 0.27 1.15 3.12 4.67 1.15 1.57 4.67 6.13 1.57 2.08

e = 81

rD = 2A 1.08 3.75 0.12 2.57 3.75 4.73 2.58 3.25 4.73 5.88 3.25 3.58 5.88 7.03 3.58 3.97

rD = 10A 0.59 3.22 0.05 1.77 3.22 4.33 1.77 2.67 4.33 5.58 2.67 3.04 5.58 6.81 3.04 3.48

The distance of the closest approach r0 = 6 9 10-8 cm
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3 Experimental Results and Discussion

Experimental results are taken from the literature [16]. The reader is referred to Ref.

[16] for experimental details; here, we briefly summarize the methods and results.

The stable monoprotic nitroxide spin probe 2,2,5,5-tetramethylpyrrolidin-1-oxyl-

3-carboxylic acid (3CP) was utilized as a model to study molecular collisions in

aqueous electrolyte solutions. The rate constant of Heisenberg spin exchange, Kex,

for CP uncharged (at low pH) or charged (CP-) (at high pH), was measured as

functions of temperature and ionic strength. It will be instructive to compare the

results for charged or uncharged 3CP with those of another relatively small,

uncharged nitroxide spin probe (nitroxide), 2,2,6,6-tetramethyl-4-oxypiperidine-d16

(pDT). By small, we mean that the unpaired spin density is sufficiently large over

the entire molecule that the relative orientations of two nitroxides upon collision is

unimportant. Contrast this with the situation in Ref. [7] where the nitroxide was not

‘‘small.’’

N

O

COOH

3CP

N

O

O

pDT

The concentration broadening, DB, in the EPR of 3CP, was studied in seven

series of samples, each at constant ionic strength, four with 3CP- (Series A–D) and

three with 3CP (Series E–G) varying the concentration of the nitroxide. The values

of 2 CCP� þ CNaCl þ CNaOH þ CHClð Þ were as follows (in mM): A, 67; B, 148; C,

297; D, 1,200; E, 29; F, 97; and G, 1,230. The results for 3CP were independent of

ionic strength, so they were averaged over the three series. Either HCl or NaOH was

added to shift the equilibrium between 3CP and 3CP- and NaCl was added to

maintain the total ion concentration constant in each series. In all cases, DB was an

excellent linear function of the concentration, C. The slopes of these lines in units

G/M yield the values of Kex.

Values of Kex are given in column 7 of Table 3. The direct measurements of the

spectra in Ref. [16] show that dipole–dipole contribution to the line width is

negligible for all T [ 298 K and contribute no more than 5 % at 298 K. The

concentration broadening due to dipole–dipole interactions can be taken into

account using methods developed recently [20, 21].

b Fig. 6 Comparison of the effective radius of the spin exchange calculated for oppositely charged
particles (thick curves) and particles of like charge (thin curves) within the theory developed in this work
(solid curves) and in the approximation reff = f Pex r0 (dotted curves). Calculations were performed for
the following parameter values: r0 = 6 9 10-8 cm, æ = 3 9 108 cm-1, e = 20, rD = 10-7 cm,
DAB = 1.38 9 10-5 cm2/s (a), DAB = 10-6cm2/s (b), DAB = 10-7cm2/s (c)
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The translational diffusion coefficient of a sphere of radius a is often

approximated by the Stokes–Einstein equation as follows:

D ¼ kT=ð6pagÞ ð45Þ

where g is the shear viscosity. In the case of like molecules the mutual diffusion

coefficient is twice the value given by Eq. (45). Values of the mutual diffusion

coefficients for the systems studied are tabulated in column 9 of Table 3. In the

theory we present the spin exchange rate constant as Kex ¼ 4p reffDAB From

experimental data, we obtain this rate constant. Thus, from equation

4p reffDAB ¼ ð3
ffiffiffi
3
p

=4ÞcdB=dC ð46Þ

we determine the experimental value of the spin exchange effective radius reff. The

results are tabulated in column 10 of Table 3.

According to the theory of strong electrolytes [14], the thickness of the ionic

layer (Debye screening radius), rD, is defined by

r�2
D ¼

e2

e0erkT

X
niZ

2
i ð47Þ

where ni is the number density of ions of type i with charge eZi. Evaluating the

constants and changing units,

r�2
D ¼

1; 265

erT

X
CiZ

2
i ¼

1; 265

erT
2 CCP� þ CNaCl þ CNaOH þ CHClð Þ ð48Þ

where rD is given in Å with concentration of the ith ionic species and Ci, in

mol L-1. The second equality in Eq. (48) follows because only univalent ions are

involved.

Utilizing data [22] for the temperature dependence of �r of water in the range

273–373 K, the rD values for the samples are tabulated in column 6 of Table 3.

Figure 7 compares the temperature dependence of Kex for 3CP and 3CP- with

that for pDT. The viscosity of the solutions were corrected for the presence of salts

using the equations of ref. [23]. Most of the viscosity correction, which reaches a

maximum of 7 % at CNaCl ¼ 600 mM, is due to NaCl. Including all ions in the

correction, using Ctotal rather than CNaCl would only change the viscosity by a

maximum of 0.6 %

The data presented on Table 3 allow us to make several observations.

The spin exchange rate constant and the effective radius of the spin exchange

between radicals of like charge, 3CP-, are less than between uncharged radicals,

3CP. This observation is rather trivial, since it is expected that Coulomb repulsion

between 3CP- will reduce a probability of an encounter of the radicals of like

charge compared to the case of uncharged radicals.

The spin exchange rate constant between charged radicals, 3CP-, or uncharged,

3CP, radicals increases when the molecular diffusion coefficient (mobility of

molecules) increases. This experimental fact is expected, since the diffusion

coefficient determines the frequency of binary collisions [see, e.g., Eqs. (7, 8)].

936 K. M. Salikhov et al.
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The effective radius of the spin exchange decreases when the diffusion

coefficient increases (see column 7 in Table 3). This experimental observation

supports the theoretical prediction. As was discussed in the Sect. 2 above, an

increase of the molecular mobility reduces the time that two colliding particles

spend in a region of their effective interaction.

Thus, the experimental data presented confirm qualitatively the theoretical

predictions concerning the rate of the spin exchange between charged and

uncharged paramagnetic particles.

However, when interpreting the experimental data quantitatively the theory meets

difficulties. For the system considered in this section of our work, we know all

molecular-kinetic parameters as well as parameters of an electrolyte. But we know

very little about the magnitude of the exchange integral and the dependence of the

exchange integral on a distance between two radicals in a solution. We wanted to

determine the parameters of the exchange interaction by comparison of the effective

radius of the spin exchange, found from the experimental data taken from [24]

(column 10 in Table 3) and theoretical simulations with fitting parameters of the

exchange interaction. Results of some simulations are presented in columns 11–16 in

Table 3. In Table 3 we present the results of fitting for three different values of the

parameter æ. For each chosen value of æ, we succeeded in finding fitting parameter

J0, which allows us to describe perfectly experimental data at 298 K. But the fitting

parameter J0 increases when the diffusion coefficient increases (see columns 11–16

in Table 3). We plan to investigate this observation further.
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Fig. 7 Spin exchange rate constants for Samples A upside down triangles, B diamonds, C triangles, D
filled circles, Average E–G squares, data taken from ref. [16]; pDT, open circles, data taken from ref.
[24]. The lines are linear least-squares fit to guide the eye. In this range DD is negligible for all samples.
At lower temperatures, DD becomes significant for pDT and the corrected values of Kex curve downward
and extrapolate to the origin [24]. See Fig. 9 of ref. [24]
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From Table 3 we see that the effective radius of the spin exchange, reff, is less

than one-half of the collision radius, r0/2 = a = 3.23 9 10-8 cm, reff \ a (see

column 10 in Table 3). Thus for 3CP and 3CP- radicals, the spin exchange is not

strong. From this fitting procedure we find that, in a case of 3CP, 3CP- radicals, the

exchange integral at the closest approach of two radicals J0 is around 1011 rad/s.

Our estimates of the two previous paragraphs rely quantitatively on the validity

of the Stokes–Einstein equation that is known to be inaccurate in some cases.

Particularly, in water, values of Kex are consistently found to be smaller than in

other solvents, by a factor of 0.50–0.71, attributed to a steric factor due to hydrogen

bonding to the nitroxide. See ref. [25], and references therein. Thus, these estimates

are presented to illustrate the method and more accurate values of J0 and æ could

result from a better understanding of the steric factors and the values of DAB.

4 Conclusions

In this work we have developed a consistent theory of the bimolecular Heisenberg

spin exchange between charged spin � paramagnetic particles in dilute solutions.

There were formulated kinetic equations for the spin density matrices of the

paramagnetic particles taking into account the binary collisions. The algorithm was

suggested which allows one to determine numerically the rate constant and the

effective radius of the spin exchange. For model situations there were investigated

dependencies of the effective radius of the spin exchange on the molecular diffusion

coefficient, on parameters of the Heisenberg exchange interaction and on the

parameters which characterize the electrostatic interaction of the charged particles in

electrolytes. The theory was applied for the analysis of the experimental data from

literature for the radicals of like charge. Good qualitative agreement was achieved.

Within the proposed theory, the effective radius of the spin exchange of charged

particles is determined by the parameters of the exchange interaction, {J0, æ},

parameters of the electrostatic interaction, {dielectric permittivity e, Debye

screening radius rD}, the collision radius r0 and the coefficient of mutual diffusion

of particles DAB. The effective radius of the spin exchange reff(J0, æ, e, rD, r0, DAB)

can be calculated using the theory developed in this work if values of all parameters

{J0, æ, e, rD, r0, DAB} are given. The spin exchange rate Kex ¼ 4preffDABCB is

measured in EPR experiments. Thus, the spin exchange rate measured in EPR

experiments contains information about the interactions between paramagnetic

particles, kinematics of the mutual diffusion of colliding pairs of paramagnetic

particles and the local concentration CB of paramagnetic particles. In such situation

different strategies of the application of EPR spectroscopy are implemented when

studying the spin exchange.

Let us assume that there is a system, for which all parameters, which determine

Kex, except for the exchange interaction parameters are known from some

experiments. In this case, one can determine the effective radius of the spin

exchange from the EPR data and then to select such values of the exchange integral

parameters, which lead to the coincidence of the calculated radius of the spin

exchange with the value for this radius found from data of EPR spectroscopy. As a
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result, from data on the spin exchange in solutions one obtains information about the

exchange interaction between two paramagnetic particles colliding in a solution. In

this work, we have followed this strategy and estimated the exchange interaction

parameters by using the rate constant of the spin exchange subtracted from the EPR

data. The exchange integral depends on the overlap of electron orbitals, so that

information about the exchange interaction obtained in this manner is useful in the

analysis of the kinetics of the electron transfer during the binary collisions in a

solution [2, 13].

The problem of determining the concentration of paramagnetic particles in

complex systems may arise. For example, in some situations it is necessary to

determine the concentration of oxygen molecules in certain regions of an organism.

Collisions of spin probes with oxygen molecules broaden the EPR spectra lines of

spin probes. One can find the oxygen concentration from the measured concen-

tration broadening of the EPR lines, if there is a theoretical estimate of the effective

radius of the spin exchange. Such a strategy of finding the concentration of

paramagnetic particles agents broadening the EPR spectra lines of spin probes is

quite successfully used in oximetry (see, e.g., [26]).
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