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An extremely important problem in astrophysies is that of obtaining a metric for
the interior of a rotating body. This is, for example, necessary for the description of
the gravitational field (along with pressure and energy density) inside a rotating star.
A special case of interest is to seek a physical, stationary'and axissymmetric solution
which can be matched-—more or less smoothly (*)—to the Kerr (exterior) solution and
which deseribes a rotating perfect or nonperfect (anisotropic pressure) fluid. Although
straightforward in principle, the problem is very difficult (2).

HERNANDEZ (1) outlined a method for constructing exact interior solution which
might serve as sources for the Kerr metric; he later (3) reformulated his method making
use of Boyer-Lindquist co-ordinates (2) and proposed a solution. Briefly, the Hernandez
method consists of guessing certain arbitrary functions which appear in a generaliza-
tion of the Kerr metric; the guessed metric matches the Kerr metric on a suitable
surface (%) and, in the limit of no rotation, goes into the interior Schwarzschild solution.
Other generalizations of the Kerr metric which do not have the interior Schwarzschild
as a limiting case may, of course, be written and examined (59).

Ultimately, one must calculate the physical components of the stress-energy tensor
in a locally nonrotating frame (LNRF) () to find out whether one is dealing with a
physically meaningful fluid. This calculation is very tedious even with the aid of
a computer.

In this note we wish to point out simple tests which enable one to investigate and
if necessary discard bad metrics without any loss of time. This method counsists of

(*) For the precise conditions, see, W. C. HERNANDEZ jr.: Phys. Rev., 159, 1070 (1967).

(3) J. B. HARTLE: Astrophys. Journ., 150, 1005 (1967) gives the components of the Ricci tensor in
his appendix.

(3) W. C. HERNANDEZ jr.: Phys. Rev., 167, 1180 (1968).

(*) R. H. Bovkr and R. LiNpQuisT: Journ. Math. Phys., 8, 265 (1967).

(®*) A. Krasinsgi: Institute of Astronomy, Polish Academy of Sciences preprint No. 63, Warsaw
(May 1976), has shown that the surface of a source of the Kerr metric should be given by r = const
in Boyer-Liguist co-ordinates.

(®) P. CorrLas and J. K. LAWRENCE: General Relativity and Gravitation, 7, 715 (1976).

(") J.M. BARDEEN: Astrophys. Journ.,162, 71 (1970), sect. 6, and appendices A, B, and C; J. M. BARDEEN
and R. V. WAGONER: dstrophys. Journ., 167, 359 (1971), sect. 2 and 9; J. M. BARDEEX, W. H. PRESS
and 8. A, TEUKOLSKY: Astrophys. Journ., 178, 347 (1972), sect. 3.

68



SIMPLE TESTS FOR PROPOSED INTERIOR KERR METRICS 69

examining the behavior of the red-shift observed at infinity for photons emitted in an

LNRF as this frame approaches the center of symmetry from different directions.

LNRF are defined so as to cancel out, as much as possible, the frame-dragging effects

due to mass’ rotation, and consequently physical processes analysed in such frames

appear far simpler than in other kinds of eo-ordinate frames. As can be seen in the

examples below singularities, event horizons, and other anomalies show up readily.
Consider the stationary and awxissymmetric line element

(1) ds? = — exp [2v] dt? 4 exp [29)(dp — w dé)? + exp [2u,]dr? + exp [2u,]1d62,

where the five metric functions v, v, , u, and g, depend only on r and 6. In addition,
the metric is assumed to be asymptotically flat; thus at spatial infinity v, w, and p, must
vanish. It is easy to show (?) that the red-shift observed at infinity for photons emitted
in an LNRF at (r, 0) is given by

(2) = 1 L 1
z—exp[——v]( —wﬁ —1,

where L is the photon’s component of angular momentum parallel to the symmetry
axis and F ig the photon’s energy (both conserved a long null geodesics) (8). Further-
more, o is the angular velocity of the LNRF as seen from infinity, while v can be con-
sidered the general-relativistic gravitational potential (7).

Example I. The Kerr metric. — Let us consider the well-known case of the Kerr
metric in Boyer-Lindquist (4) co-ordinates

A—a?sin 2 Bgin2@ 4amr sin? 6
3)  dst— _—751— e + %dﬂ-{— 02d0> + - 212 dge 2 T dpdt

4 = 12— 2mr 4+ a*,
(4) @2 =12+ a?cos?f,
B = (124 a?)* — a2 4 sin?6 .

In this case eq. (2) for the red-shift is

B 2amrls
(5) c= /(1)1
0*4 BE

When a®< m? the larger of the roots of A =0, r,=m -+ (m*—a?)?}, is an event
horizon (z—> oo). The vanishing of ¢* for 6 = 7/2, » = 0, gives us the ring singula-,
rity (4). The function B is positive in the physical range of the variables except at
6 = m/2, r = 0, where it vanishes linearly, and therefore it does not affect z. The sta-
tionary limit surface does not appear in eq. (5) since it is not an event horizon for
our photons.

(®) Note that since the energy of a physical particle must always be positive as measured by the LNRF
observer, we must require E—wZL > 0; for the origin of this condition see the second of ref. (7).
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When a? > m?, 4+ 0in the physical range of the variables, and so there is no event
horizon. We have a naked singularity, and the red-shift at r = 0 is discontinuous
with respect to the angle; e.g., for L = 0 photons

Zlg=nj2 > OO 2lonn/z = 0.
r=0 r=0
Example 1I. Hogan’s metric. — HocaN (?) proposed an interior Kerr solution which,
in Boyer-Lindquist co-ordinates, is given by
(6) ds?=—d&z+ (1 —f)(dt + asin20de)? + (r2 + a?)sin2 0 de? + (p2/y) dr2 + 2d6?,

where o? is given by eq. (4),

g=rr—gietat, f=@FVi—g@t—3VIi—gR ),  E=gr,

b is a constant, ¢ = 2m/b® and b > 2m. Line element (6) matches continuously to (3)

on the closed 2-surface
b 14 VI 4q2 cos? 6 O<p<?
P o= — T . b o= 7T,
2 b? v

(6/2)2>m2>a?.

where

Moreover for @ = 0 it becomes the interior Schwarzschild solution for a homogeneous
sphere of perfect fluid of radius b.

Unfortunately it is easy to see that line element (6) becomes complex in the physical
range of the variables. The function f can be rewritten as follows:

(7) f:l[5—ﬂ_wﬂ_3V(l_?:n)(l_w(‘)s‘le)z)jl.

bh3yr2

The term — 2matcostf/(h3r?) in the square root will grow, for £ =/2, as r -0
and f will become complex. The red-shift (we consider L = 0 photons for simplicity)
is given by

o 24 a? + (1 —f)a?sin2 6]} .
- 02f + a?sin6 o

and, likewise, becomes complex (it is interesting that for 0 = z/2, z is well-behaved
all the way to » = 0).

Ezample III. Another interior Kerr metric.  Consider the line element (again in
Boyer-Lindquist co-ordinates)

Ay —a?sin20

Bsin?0 dot— daf, smz‘(-)
92

(8) ds? = —

dedt,

2
e+ & dret gzage +
a4,

(°) P. A, HoGaN: Leit. Nuovo Cimento, 16, 33 (1976).
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where o® is given by eq. (4), and
d; =1+ a*—2f;, 1=0,1,

B = (1 + a*)?2—a?4,s8in%0 ,

©) _r[me 3V1_2_m ML) B
Jo 4| 7 + 74 + 7o 73 ’

mrs

flz“

-
"o

We require that r,> ¢gm/4. Line element (8) is a slight generalization of the line
element investigated by LAWRENCE and the author (8); it matches eontinuously the
Kerr metric (3) on the ellipsoid » = r, (5) since

filrg) = mry, t=0,1

and

ay
dr

r=r,

{in fact it satisfles Hernandez’ continuity conditions (*)). Furthermore line element (8)
for a = 0 becomes the interior Schwarzschild solution for a sphere of radius »,.
The red-shift (again L = 0 for simplicity) is now given by

10) = I/ B 1
( z2= o, .

In this case A4,> 0, and B> 0 in the physical range of the variables; B vanishes
only at 6 = #=/2, r = 0, where, now, it vanishes quadratically and again it does not
affect 2. Therefore there is no event horizon. The ring singularity at e?= 0 is still
there, unfortunately, and gives rise to finite red-shift at » = 0, but discontinuous in 6:

oxmz =10, zlf}:nlz = Vl + 20—1,

r=0 ir—o

(11) 2

where

One may, of course, choose a different f,; for example in f;, with the property f, = O(r%)
a8 r—0, ¢> 2, would make 2= 0 at r = 0 and continuous. However, that does not
eliminate the trouble. This is because 2(r, 0) for any given r, 0 must either depend on
the parameter a, or, otherwise, be equal to the nonrotating limit z at that point. For the
present case the nonrotating limit is the interior Schwarzschild metric, and we
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obtain
2

P —
2m
3Vyl1———1
To

which is positive definite (and becomes infinite for ry= gm/4 as expected).

HERNANDEZ (3) gives an example of an interior Kerr metric which for sufficiently
small angular-momentum parameter ¢ has only a co-ordinate singularity along the
symmetry axis (6 = 0). It can be shown that this singularity arises from the vanishing
of g,, = exp[2y]. The circumference of a circle around the axis of symmetry as meas-
ured in a LNRF is () 27(g,q)} = 2x exp [¢] = 2n7r sin 0 exp [«(r, 6)], and therefore we
see that it is expected to vanish at 0= 0.

In conclusion, we would like to emphasize that these tests can be applied to any
metric of the form (1) which is asymptotically flat.
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I am grateful to J. K. LAWRENCE for stimulating and helpful discussions.
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