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The Runge-Lenz vector is used to obtain the equation for the Kepler orbits algebraically and
the frequency of small oscillations of a particle about a stable circular orbit. The invariance of
the Hamiltonian under the Lie algebras generated by the components of the Runge-Lenz

and angular momentum vectors is discussed.

I. INTRODUCTION

In this paper we present a new and simple
algebraic way of obtaining the equation of the
orbit for the Kepler problem, The method requires
only elementary Newtonian mechanics and does
not involve solving a differential equation or
performing any integrations.!

This method has been used in mechanics
courses at all levels but is particularly suited to a
junior level course, in which students will be
solving a number of orbit problems by the
standard techniques. Apart from its simplicity, the
method is intrinsically interesting because it makes
use of an unusual conserved quantity, the so-called
Runge-Lenz vector. In the corresponding quan-
tum mechanical case, the hydrogen atom, the
conservation of the Runge-ILenz vector and the
associated invariance under the group O(4) have
been used to obtain the spectrum algebraically and
to understand the so-called accidental degeneracy.?
Thus the student may encounter generalizations of
the ideas considered here in more advanced
courses.

In Sec. IT we show that the Runge—Lenz vector
is a constant of the motion and subsequently use
this fact to obtain the equation of the orbit and the
frequency of small oscillations about a perturbed
circular orbit. In Sec. IIT we outline briefly the
connection between the conservation of the
Runge-Lenz vector and the invariance of the
Kepler problem Hamiltonian under the groups
0(4) or 03, 1). The contents of See. III are in no
way hecessary for the results of See. II and are
included for the benefit of readers who might wish
to pursue the subject more deeply.

II. KEPLER’S PROBLEM

We begin by showing that in the case of a
potential
VO”) - —01/?",

the Runge—Lenz vector
A=vxl—ar/r, (1

is a constant of the motion.? In Bq. (1), v and 1 are,
respectively, the velocity and orbital angular
momentum of a particle of mass u. Since for
central forces 1 =0, the total time derivative of A is

A= x1—ov/r+a(r-v)r/m,

where we have used also the fact that r-v=r7.
Substituting 1= ur x v above and using the vector
identity a % (b x¢) = (a-¢)b~(a-b)¢c, we obtain

A= (p¥-v)r— (w¥-r)v—av/r+alr-v)r/r
The Newtonian equation of motion is
¥ =—oar/¥,

and upon substitution in the expression for A we
find that A=0.

We now proceed to find the equation for the
orbit. In eylindrical coordinates we have

1= pur¥fe,, (2)
and

A= (urf?— o) e,— urtife,, 3)

where e, e, e, are unit vectors. Clearly the
constant vector A lies in the plane of the motion
and determines a direction which for simplicity
we choose as our polar axis.

Using r=re, and Eq. (3), we have

1-A=7r4 cosf=r(uft—a). (4)

Finally, making use of Eq. (2) to eliminate 6 from
Eq. (4), we obtain the equation for the orbit

(B/ow) (1/r) = (4/a) cosf-+1. (5)
The eccentricity ¢ and the length of the latus
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F1a. 1. Arrangement of the vectors for two positions on an
elliptical orbit. A4 =ae, |ar/r|=const, |vX1|=vl~v,
I being constant.

rectum £ are given by

e=A/a,  E=20/(au).

From Eq. (4) we see that Ais parallel tor(6=0) =
Tmin; We illustrate the situation in Fig. 1.

We can also obtain the frequency of small
oscillations about a stable circular orbit which
results if the particle is given a small radial im-
pulse changing its energy but not its angular
momentum.*

From Egs. (2) and (3) we have

A2= (Bfur—a) I, (6)

and sinee for a circular orbit, at r=r, A and 7
must vanish, we obtain from Eq. (6)

B/ (ure) =a. (7

We perturb the orbit, letting r—r+a with
=4 in Eq. (6):

A= {[B/u(rot2) ]— a2+ (8)

Assuming that z/7y<<1 and using Eq. (7) twice,
we approximate Eq. (8) as

2ol (/1) 2 aured?. (9)
Since the particle is still moving in the same force

field, we must have A=0; thus from Eq. (9) we
have

2A Ars2auryi[E+ax/ (ure®) ]=0,

PETER COLLAS

or
E+ax/ (urd) =0,
which gives us
w?=a/ (urs?).
III. CONNECTION WITH LIE ALGEBRAS

The existence of the additional constant of the
motion is due to the fact that the Hamiltonian, H,
for the Kepler problem is invariant not only under
the 3-dimensional rotation group O(3) (angular
momentum conservation) but also under the 4-
dimensional rotation group O(4) if H<0, or the
group O(3, 1) if H>0.5 It is somewhat tedious but
not difficult to show that the components of the
orbital angular momentum 1 along with the
components of the veetor

N=[u/ (2| H[)]"A

are the generators of the Iie algebra of O(4) or
0@3,1). In particular the following Poisson
brackets hold

ey L) =1, (I, 1) =1, (I, o) =1,
(loy Ny) = (Ng, ) =N,
(lyy No) = (N, 1) =N,
(ls; No) = (N, l.) =Ny,
(lay No) = (ly, Ny) = (I, N.) =0,
(Ngy Ny) = £l (Ny, No) = xls, (No, No) = £,

the (4) sign for H <0 and the (—) sign for H>0.
There is only one invariant® (Casimir operator)

F=}(P+2),

the other G=1-N=0. Finally the Hamiltonian can
be written as

H=—(u/2)[e?/(N*+1)]
and is thus manifestly invariant under O(4) or
0@3,1).
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In view of the increasing interdependence of the sciences and of the growing curricular
demands upon students of science, a new program encompassing material from introduetory
majors-level courses in physics, chemistry, and biclogy has been developed. This core course
is a two-year sequence which is designed to prepare students to undertake an advanced under-
graduate program in any of these fields beginning in their sophomore year. The syllabus and
special features of the course are discussed and several of the ongoing problems are reviewed,

INTRODUCTION

An emerging concern among college science
teachers in recent years has been with the develop-
ment of multidisciplinary courses at the under-
graduate level™® A common combination has
been physics and chemistry, but a number of
significant attempts have been made involving the
biological sciences as well. The incentives under-
lying these developments are manifold. One can
cite: (a) the rapidly growing body of inter-
disciplinary scientific research such as biophysics,
environmental science, and molecular biology;
(b) the desire to eliminate overlap among the
disciplines in the teaching of certain subject matter
in the face of expanding curricular demands;
(¢) a need to serve the science student who has
not eommitted himself to a major, as well as the
nonscience student who increasingly requires a
broad background in science; (d) the multi-
disciplinary background required of science-

oriented professionals such as medical doctors and,
oceanographers; (e) the recent development of
multidiseiplinary high school courses,”® which
argues for a similar orientation in the training of
secondary school science teachers; and finally,
(f) a growing ecumenical feeling that new
channels and dialog should be created among
heretofore fragmented areas of science.?

The record of success in these undertakings has
been spotty. Courses for nonscience majors have,
in many cases, prospered. An outstanding example
is the baccalaureate science program developed at
the Rensselaer Polytechnic Institute.’® Despite
powerful reasons for the ecreation of combined
courses designed for science majors, these students
have not in general been the beneficiaries of the
multidisciplinary fervor. Of the 520 multidis-
ciplinary courses reported upon by Fuller,2 only 51
wers designated as being suitable for science
majors. Of these, 11 are concerned with the three
core sciences: physics, chemistry, and biology.



