1 Introduction

1.1 The Problem

Consider a spherical surface with radius R. Suppose that the surface has been
cut by four (4) right circular cylinders with parallel axes. Consider a plane that
passes by the center of the spherical surface and is orthogonal to the axes of the
cylinders. The plane section of the spherical surface when it is cut by this plane
is illustrated in the following picture:

Let ¢1, ¢2, csandcy be the circles that represent the plane section of the cylin-
ders by this plane. Observe that c; is tangent to c3 and co is tangent to cy.
Furthermore, ¢; and ¢4 share the same radius (rs) and co and c3 share the same
radius (7). Observe that ¢y, co, czandcy are tangent to the plane section of the
sphere with radius R.

Calculate the radii of cylinders that maximize the surface area on the sphere
that is projected on the pigmented region of the above figure.

1.2 Historical Perspective

The above problem was first explored by Japanese Mathematicians during the
period in which Japan was isolated from the western culture (1603-1867). It is
important to observe that during this era, the Japanese didnt have access to the
progress that was being made in the calculus field. However, they were still able
to work on geometry problems using their own techniques of Calculus. In this
problem we found that even by using advanced calculus techniques, it was still



difficult to solve by hand. Probably because of this difficulty we never found a
satisfactory answer in the source literature.

2 Solving the Problem

2.1 First Contacts, Parametrization and Integrals

Our first contact with the problem was to get familiar with the concept and un-
derstand thoroughly the question. We did this by making sure we undestood all
the concepts invloved and by visualizing the problem using “Geometry Sketch-
pad.” In “Geometry Sketchpad,” we were able to see all the symmetries in-
vloved. This helped us to:

1. We set up the coordinate system by considering a few things: First, by
the definition of tangency, we know that if two circles are internally tan-
gent then their centers and the point of contact are collinear. We al-
ready observed that c¢; is tangent to c3 and cy is tangent to ¢4 and also
c1, C2, cgandcy are tangent to the plane section of the sphere. Therefore,
the circles in the above figure have collinear centers. Because of this we
decided to fix the x-axis such that it contained all the circle centers of
the bisector plane. Secondly, we let the z-axis be parallel to the cylinders
axes and through the center of the sphere. It follows that the y-axis will
be the line through the center of the sphere and perpendicular to the x-z
plane. Therefore, the coordinate system that we set up has symmetry
with respect to the x and y axis. This symmetry property allows us to
work only in the first quadrant.

2. Label the main points: Considering only the circles ¢; and c3, we have
that the sum of the diameters equals the sphere’s diameter. So then we
can write:

2rs +2r, =2R=> R =1y + 75

Using the coordinate system, we have that:

3. Visualizing the limitations: The radius of the small circles cannot surpass
the radius of the bigger circles. In fact, rs < R/2. We noticed that if we
have rs = R/2, then the surface area will be zero because the small circle
will coincide with the big circle.

After familiarizing ourselves with the problem a little more using Geometry
Sketchpad, we can begin solving the problem. We start with the equation of
the sphere:



R? =42 4+ 4% + 22

By solving this equation for z, we can rewrite this function as z = £1/R2 — 22 — ¢2.
Due to the symmetry of the sphere in relation to the xy-plane, we will only work
with the positive case and write f(z,y) = +4/R? — 22 — y? now compute the
surface area, we need to use the following formula:
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where D is the domain of the surface area which we are trying to maximize.
The following is an overview of how we got the above formula:

1. Divide the domain into small rectangles. For each rectangle, choose one
of its vertices.

2. Consider the tangent planes to the surface through these vertices, and
take the parallelograms bounded by the rectangles in the domain.

3. The summation of the areas of the parallelograms approaches the surface
area when we make the rectangles smaller and smaller.

Since the surface area formula involves partial derivatives, it was necessary
for us to calculate the partial derivatives of the function f(z,y) = +/R? — 22 — y?
in terms of x and y. Once we calculated the partial derivatives, we then replaced
the results in the surface area formula, and got the following:
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Recall that due to the symmetry, we are only working in the first quadrant.
Therefore, we can consider D in the integral above as the domain in only the
first quadrant. Since the domain is bounded by three different functions, we
needed to split it in two different regions named D; and Ds, as the following
picture:



The next step was to find the equations that describe the circles, using 7,
ry, Cs and Ch:
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Then we set up the integral for each domain D; and Dy and added them
together in order to get the entire integral. But before we obtained the entire
integral, we first calculated the partial derivatives and inputed it in the surface
area formula, giving us:
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In attempting to solve this integral we used differents methods, like polar
coordinates, substitutions and integration by parts. However, none of the tech-
niques we used worked. So we decided to use a computer algebra system.

dydx



2.2 Using Mathematica

The standard package of Mathematica for solving integrals didn’t work because
the integral is probably not analytic. At this point, we realized that we could
not solve it directly through analytic means. So we tried to solve some specific
numerical cases in an attempt to generalize a solution.

So, we looked for other ways to solve it in Mathematica and we found a
package that solves integrals using complex variables and residuals, called Cal-
culus.

However, for this package to work correctly we needed to calculate the inte-
gral under the limits from —oo to +00. Therefore, we had to use other strategies
to define our domain.

To do this we used the function Boole, which returns 0 if a logic sequence is
false or 1 if the sequence is true. For example, if a point is outside the domain,
the function Boole returns 0. However, if the point is within the domain, the
function Boole returns 1. So the integral under the limits from —oo to +o0 is
nulled outside the domain

Once we did that, we were able to use the following integral to solve our
integral:

Boole [D1(z,y)]dzdy+
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To define Dy and Dy we used the following sentences in the function Boole:

Di: [z < R—2rghz > 0A(x +72) +y* > (rp)?Alz —r2) + 4 < (rp)?]

Dy : [z < RAz > R —2r Az —73) +y% > (rs)*Alz — 72) + y% < (rp)?]

Since this package only allowed us to calculate numerical integrals, we needed
to take a value to R and a set of values to rs and compute the integrals for these
values to find an approximation to the maximum surface area.

In a primary analysis, we used R = 4 and rs = 0,0.25,0.5,0.75,1,1.25,1.5,1.75,2
(remember that ry < R/2). We obtained these values for the surface area

lthe commands used to do this are in the Appendix



| Small radius | Surface area |

0 0
0.25 11.95
0.5 14.96
0.75 15.84

1 15.24
1.25 13.41
1.5 10.37
1.75 6.06

2 0

Observe that in this table the function reaches the maximum when the small
radius equals 0.75.

Now, we need to refine these results by taking points closer to 0.75. Since
the function seemed to have a unique maximum at ry = 0.75, we took points
between 0.5 and 1: r, = 0.60,0.65,0.70,0.75,0.80,0.85,0.90 and obtained the
following values:

| Small radius | Surface area |

0.6 15.52
0.65 15.69
0.7 15.80
0.75 15.84
0.8 18.83
0.85 15.76
0.9 15.64

Observe that again, the function reaches the maximum when r; = 0.75 in
this table. To finish, we did one more refinement by taking the values between
0.7 and 0.8:

| Small radius | Surface area |

0.71 15.810
0.72 15.821
0.73 15.830
0.74 15.837
0.75 15.841
0.76 15.843
0.77 15.842
0.78 15.840
0.79 15.836

After the refinements we have a new maximum at 0.76.
This procedure can be repeated as many times as needed if one wants to
increase the precision of the answer. However, we stopped here.



Afterwards, we started to do the same procedure using R = 1,3,6,7,10 2.
Denoting ¢ as the value of r; which maximize the Surface Area, we have the
following values to ¢:

| Sphere radius (R) [ ¢ |

1 0.19
3 0.57
4 0.76
6 1.15
7 1.34
10 1.91

Now we can plot these points in a Cartesian System:

2 4 6 8 10

Observe that the points are almost lined up and pass through the the Origin
(because when R = 0 the surface area will be 0), this suggest to us that the
function is linear. So we can look for the line that minimizes the distance
between the points and the line. This line approaches the linear function which
describes the behavior of ¢ in terms of R.

We found the slope (a) of the line and the approximation error using a
Scientific Calculator:

a = 0.191 £ 0.002

Observe that the error is very small. So this confirms the function is linear.
Now we can write a function of R to ¢, using the value of a:

©(R) = 0.191R

2You can find the results in Appendix



2.3 Conclusion

Therefore, we found a relationship between the radius of the sphere (R) and
the value of the small radius which maximizes the proposed surface area ().
Although we calculated the results through a numerical method, they are only
an approximation.

3 This Problem as a Activity for students

3.1 Pedagogical Aspects

This problem is a good example of how a teacher can improve his/her class by
involving different mathematical contents. Contents such as Geometry, Calculus
and technology. By incorporating all these subjects together, a teacher can get
his/her class more involved and more willing to learn the material.

However, it is important to note that the material being exposed to the
students, should be in such a way that it depends on the grade level and on
their mathematical background. For example:

1. Middle School: The material invloved in this grade level should incorpo-
rate the geometry aspects of this problem in a two dimensional system
, i.e., the tangency properties, symmetry, and the coordinate systemlt
should also include the technological aspects, such as a dynamic geometry
software.

2. High School: The material involved in this grade level should incorporate
the aspects of geometry, calculus, and some introduction to computer
algebra systems.

3. College: This problem can be incorporate into a research project. It can
also be used to explore: advanced computer systems, advanced calculus,
and other numerical methods, such as linear fits.

3.2 Using Computers

As mentioned earlier, this problem which was created by the Japanese Mathe-
maticians before the complete development of calculus, remained unsolved be-
cause the involved calculations were far too complicated. And although, now in
days we are far more advanced in the calculus field, this is still not enough to
solve this problem. In fact, in order to solve this problem, we need the help of
a computer.

The use of computers is very important. For example, with the help of a
computer, we are able to simulate and visualize some aspects of the problem.

In our case, we used computers to make some simulations which would be
harder to do by hands, after, we need the computer to solve the numericals
integrals, but in both cases the interpretation of answers must be done by us.



This is an important aspect about the use of computers. These are just
tools to help us in some works, like complicated calculations, drawings and
simulations. However, it is our responsability to know how to use these tools
and to understand its answers to better facilitate learning.

For example, on this problem, the first week we thought all we needed to do
was find the domain and solve a few integrals by hand. By the second week we
realized that the integral was to complicated to solve. So we figured a simple
computer program that would be able to solve what we could not by hand.
During our attempts to solve it by computer we ran into a few problems. We
came to the conclusion that we needed to change our methods to solve the
original problem. The computer showed us that our approach was wrong, but
it was still our responsibility to understand our mistakes and to develope a
new approach. The main conclusion was that we could not solve the problem
analytically, so we developed a method to solve it numerically. This was our
research and mathematical skill that allowed us to obtain numerical results in
the original problem. Even though, the computer helped us in our calculations
along the way, it could not produce the final solution.

That is why it is importat for teachers to know and to stress to their students
the fact that there are limitaions to technology. This is why it is up to us to
do the hard work and to understand the mathematics behind the computers
answers.



