
Using MATLAB to solve
differential equations numerically

Morten Brøns
Department of Mathematics

Technical University of Denmark

September 1998

Unfortunately, the analytical tool-box for understanding nonlinear differential equa-
tions which we develop in this course is far from complete. The good news is that with the
present day computer power it is possible to compute numerically approximate solutions
to the equations. The purpose of the present chapter is to give a quick introduction to
this subject in the framework of the programming language MATLAB. We will focus on
practical matters and readers interested in numerical analysis as a mathematical subject
should look elsewhere.

In the G-databar at DTU, MATLAB can be accessed either by typing ������ at a
terminal prompt or by pressing the middle mouse button when the cursor points at the
terminal background. A small menu pops up, and MATLAB can be chosen under the item
mathematics. In any case, a terminal window with the MATLAB prompt “��” results, and
if this is your first try you are advised to type ���	 to get a demonstration of the program’s
capabilities. Also, the command
����� gives an interface to the on-line help system.

You probably want to save all material for this course in a directory, say, �������;
having created this the matlab command �� ������� will make it the working directory.

Before anything can be done with a differential equation, a so-called ��-file defining
the right hand side must be created. As an example, consider the van der pol equation

ẋ � y� ẏ � �1� x2�y� x� (1)

Open your favorite text editor, enter the following

�����	� ��	� � ���������

��	� � ���	�������

��	���� � �����

��	���� � �� ����!��"���� �����

and save it as ������.
The first line defines a function ����, a function of time � and the state vector �, which

returns the value of the right hand side of the system (1). Since the system is autonomous,
time does not appear explicitly. The next line initialises the function to be a matrix with 2

1

rows and 1 column – i.e. a column vector – consisting of zeroes. The two final lines then
compute the two coordinates of the right hand side. The lines end with a semi-colon to
prevent the result from being printed when the function is called.

To solve this equation numerically, type in the MATLAB command window

�� #���$ � 	��%&�'����'� #(�($� #� ($��

(except for the prompt generated by the computer, of course). This invokes the Runge-
Kutta solver 	��%& with the differential equation defined by the file ������. The equation
is solved on the time interval t � �0�20� with initial condition �x�1��x�2�� � �1�0�. The
solver obtains results at times stored in the one-column vector � with the corresponding
solution in the two-column matrix �. The solver has an error control and adjusts the time
step to try to make the error within a certain bound. Hence, the number of steps taken in
not known in advance. Check the actual size by e.g. ������. Further information on the
solver can be obtained by
��� 	��%&.

You can plot the variables as a function of time using

�� ��	������)����'�'�����)����'� �'�

A new window opens with the plot. Here ��)��� means everything in the first column in
� and '�' gives a red curve. The second column is shown in blue with a dash-dotted line.
Use
��� ��	� to see how to control the plot.

A plot in the phase plane of the solution may be obtained by

��	����)������)����

See figure 1.
Note, that in the MATLAB command window you can scroll through previous com-

mands by using the up and down arrow keys. This is most useful for editing and reusing
previous commands.

The Runge-Kutta method used above is a good choice for a standard solver. However,
for some systems of differential equations the error control will force the solver to take
extremely small steps, and more advanced methods are needed. Such systems are called
stiff, and this occurs typically when the dynamics involve both slow and fast changes.
Methods for stiff problems are generally implicit, that is, in each time step a non-linear
set of algebraic equations must be solved. This is time-consuming, but the advantage is
that much larger steps can be taken and the overall performance is significantly improved.

To illustrate stiffness, consider a modified van der Pol equation

ẋ � y� ẏ � 1000�1� x2�y� x� (2)

Make a file ����(((�� with the following contents:

�����	� ��	� � ����(((�����

��	� � ���	�������

��	���� � �����

��	���� � �((("�� ����!��"���� �����

and solve as before but with a very short time interval t � �0�1�:

2

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

FIGURE 1: MATLAB plots of a solution to the van der Pol equation (1). Top: Time traces.
Bottom: Phase plane.

�� #���$ � 	��%&�'����((('� #(�$� #� ($��

How many steps where taken?

�� ������

��� �

*(** �

The array � has 3033 rows (and 1 column) so this is the number of steps. MATLAB also
has an implicit solver for stiff systems, 	���&�, which may be used as follows:

�� #���$ � 	���&��'����((('� #(�$� #� ($��

�� ������

3

��� �

�+& �

Here, only 165 steps was needed and the computation was performed much faster.
In fact, the time interval considered is much too short to be of interest. These com-

mands give the plots in figure 2:

�� #���$ � 	���&��'����((('� #(*((($� #� ($��

�� ��	������)����

�� ��	����)������)����

Note the long period of the limit cycle compared to figure 1, the different scales of the two
variables, and the slow-fast behavior which is the source of the stiffness of the system.

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1500

−1000

−500

0

500

1000

1500

FIGURE 2: MATLAB plots of a solution to the van der Pol equation (2). Top: Time trace of x.
Bottom: Phase plane.

4

Rather than define individual ��-files for the different versions of the van der Pol
equation, it is convenient to consider a parametrised family

ẋ � y� ẏ � µ�1� x2�y� x� (3)

and then afterwards specify the relevant values of the parameter µ. Parameters may be
transported as follows. Define the file �������� with the following contents

�����	� ��	� � ��������������,�����

��	� � ���	�������

��	���� � �����

��	���� � ��"�� ����!��"���� �����

(The variable ���,� is a dummy variable which is not important here.) To obtain a solu-
tion with µ � 1, type

�� #���$ � 	��%&�'������'� #(�($� #� ($� # $� ���

To draw a phase portrait you will need more than just one solution. Here is a primitive
procedure in a file �
���	���� that provides this easily:

�����	� �
���	����-���	�������������	����,���	�����

����

������	����,���

	�� 	��

����	� � ��

�
�� ����	� �� ��

#������������������	�$ � ,��������

� ����	� .� � ����/� ����

#0�1$ � �������	������-���	����������������

��	��1�)����1�)�����

#0�1$ � �������	������-���	��� �������������

��	��1�)����1�)�����

����

In the procedure �-���	�� is the name of the ��-file defining the equations, �������
is the time interval wanted for the solutions, ��	����,� is of the form #��� ���� ���

����$ and defines the plotting window in the phase plane, and �	���� is the name of a
MATLAB differential equation solver.

When called, a plotting window opens, and the cursor changes into a cross-hair. Click-
ing with the left mouse button at a point in the phase space gives the orbit through that
point. First the equations are integrated forwards in time and this part of the orbit is plot-
ted. Then the same is done backwards in time. In either time direction the orbit may
become unbounded, and a warning may be printed in the MATLAB command window.
This is generally of no consequence, but if you have chosen ������� to large, com-
putations may be unacceptably slow. Then press “control-c” in the MATLAB command
window to break the execution and adjust the time interval. When an orbit is drawn you
can continue clicking at points, and when you are satisfied click any other mouse button
in the window, and the procedure terminates.

Figure 3 is created by the call

5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

FIGURE 3: Phase portrait of (1) using the procedure ��������.

�� �
���	���'����'�#(*($� # * * * *$� '	��%&'�

Again, you may want to include a parameter. This is done by �
���	�������:

�����	� �
���	�������-���	�������������	����,���	���������������

����

������	����,���

	�� 	��

����	� � ��

�
�� ����	� �� ��

#������������������	�$ � ,��������

� ����	� .� � ����/� ����

#0�1$ � �������	������-���	���������������# $������������

��	��1�)����1�)�����

#0�1$ � �������	������-���	��� ������������# $������������

��	��1�)����1�)�����

����

The phase portrait in figure 3 can then be also be obtained by the call

�� �
���	������'������'�#(*($� # * * * *$� '	��%&'���

6

