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Abstract
We discuss the role of long division in the K - 12 mathematics curriculum.
We begin by reviewing the reasons that most math educators today
depreciate the topic and other topics in the curriculum that derive from it,
such as polynomial long division or polynomial factorization. Later we show
that this view is simply wrong mathematically.  The role of long division is
not just to divide one rational number by another, but the algorithm itself
contains the initial exposure of topics which become crucial in the core
applications of mathematics in our society today. Following the introduction,
we discuss methods for teaching long division in such a way that the
underlying concepts can be understood by students. We then provide more
details about the ways in which these concepts develop in later mathematics
course, and why they are so important.

Introduction

There is a long standing consensus among those most knowledgeable in mathematics that
standard algorithms of arithmetic1 should be taught to school children. Mathematicians,
along with many parents and teachers, recognize the importance of mastering the standard
methods of addition, subtraction, multiplication, and division in particular.  The profound
importance of the long division algorithm and its role as a prerequisite to other parts of K-
12 and university level mathematics will be described in this paper.

It is unfortunate that during the past decade, and even before, mathematics education leaders
in the United States have called into question the practice of requiring elementary school
students to master these standard algorithms.  Long division has been especially targeted for
de-emphasis, or even elimination from the school curriculum.2 We hope to make clear why
this tendency should be reversed by explaining the importance of the long division
algorithm on conceptual grounds.

                                                
1 It is often asserted  that there really are no “standard” algorithms for arithmetic.  Over the years there have
been small variations in the exact procedures taught.  For example, from Tom Lehrer’s song, The New
Math, “Consider the folowing subtraction problem which I’ll put up here, 342 – 173.  Now, remember
how we used to do that: 3 from 2 is 9, carry the one, and if your are under 35 or went ot a private school
you say 7 from 3 is 6, but if you are over 35 and went to a public school, you say 8 from 4 is 6, and carry
the one so you have 169.”  The variations are minor.  The basic processes are the same and students should
understand the underlying  principles.
2 Among the reasons are the complaints from many teachers that it simply takes too much class time to
develop.  But one of  the objectives of this paper is to show that the content concealed in this algorithm is
worth a considerable amount of class time, and that there are efficient methods for presenting this content
which may not be as time consuming as more standard developments.
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The trend was perhaps codified in the 1989 Curriculum and Evaluation Standards for
School Mathematics, published by the National Council of Teachers of Mathematics. This
document, often referred to as the NCTM Standards, specifically recommended that long
division receive decreased attention in schools along with "practicing tedious pencil-and-
paper computations” (pages 21 and 71).  The same document (page 8) recommended to the
nation's math teachers that "appropriate calculators should be available to all students at all
times."

Support for this direction could be found in the popular press. A special issue of Newsweek
in 1990 [N] carried an article called Creating Problems that derogated pencil-and-paper
computation. The opening paragraphs offered a narrow view of arithmetic through a
hypothetical race between a calculator and a seventh grade student:

Let us consider two machines, each capable of dividing 1,128 by 36. The
first is a pocket calculator. You punch in the numbers, and in a tenth of a
second or so, the answer appears in a digital display, with an accuracy of, for
all ordinary purposes, 100 percent.

The second is a seventh grader. You give him or her a pencil and a sheet of
paper, write out the problem, and in 15 seconds, more or less, there is a
somewhat better-than-even  chance of getting back the correct answer.

As between them, the choice is obvious.  The calculator wins hands down,
leaving only the question of why the junior high schools of America are full
of kids toiling over long division, an army of adolescents in an endless
trudge, carrying digits from column to column.

Later in the same article, Thomas Romberg, professor of curriculum and instruction at the
University of Wisconsin, Madison, is quoted as saying, "There isn't anyone out there
anymore who makes his living doing long division."

Newsweek and the NCTM Standards were far from alone in promoting calculators over
paper-and-pencil computations for young school children.  Many articles appeared in
journals published by the National Council of Teachers of Mathematics (NCTM) calling
into question the teaching of the usual arithmetic procedures and offering calculators in their
place for the early grades.  A complete survey is beyond the scope of this paper, but a
typical view was expressed in a 1994 article in the Arithmetic Teacher, when it admonished
that, "...the widespread availability of calculators has made traditional skill with paper-and-
pencil computational algorithms, and therefore much of the current school mathematics
curriculum obsolete..." [AT]. An article published the same year in Education Week  and
written by a mathematics consultant for the Connecticut Department of Education went even
further:

It's time to recognize that, for many students, real mathematical power, on the
one hand, and facility with multidigit, pencil-and-paper computational
algorithms, on the other, are mutually exclusive. In fact, it's time to
acknowledge that continuing to teach these skills to our students is not only
unnecessary, but counterproductive and downright dangerous.[EW]

The view that the four standard arithmetic algorithms are obsolete, superfluous, and perhaps
even dangerous was so widespread among education specialists that many elementary
school curricula abridged or eliminated them.  "Mathland," a K-6 curriculum, is a case in
point. Mathland was used by 60% of California's public elementary schools at one point in
time, according to its publishers [M].  There are no student textbooks for this NCTM-
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aligned series, but the teacher's manual for each grade urges teachers not to teach the
standard arithmetic algorithms, promoting "invented algorithms" by students instead.

By December, 1997 opposition to the long division algorithm was sufficiently well
entrenched among education administrators and mathematics education experts in California
that the California Academic Standards Commission, an advisory committee to the State
Board of Education, recommended a set of K-12 mathematics standards for state-wide
adoption which intentionally omitted any requirements for long division except in the case
of single digit divisors [OL].  The California State Board of Education rejected this
document for a variety of reasons, including this particular shortcoming. In spite of fierce
resistance from the education community [Wu], the state board approved a rigorous revision
of these standards that was developed with the help of mathematicians at Stanford
University.

Recognizing that mathematics education had gone awry, college math teachers and
professors responded. More than 100 California mathematics professors endorsed an open
letter [OL] in February 1998 supporting the adoption of the far superior current California
K-12 mathematics standards. The letter explicitly pointed out that the rejected Commission
Standards "fail to require K-12 students ever to master long division when the divisor has
more than a single digit."  The letter was endorsed by the chairs of the math departments at
Stanford University, Caltech, several UC and CSU campuses, the vice president of the
American Mathematical Society and a former president of the Mathematical Association of
America. Jaime Escalante, portrayed in the movie "Stand and Deliver," also endorsed this
letter which explicitly defended long division.

At about the same time, a committee of the American Mathematical Society (AMS), formed
for the purpose of representing the views of the AMS to the National Council of Teachers
of Mathematics published a report which stressed the mathematical significance of the long
division algorithm, as well as addressing other mathematical issues.  An excerpt from this
report published in the February 1998 issue of the Notices of the American Mathematical
Society   is illuminating [AMS] :

Standard algorithms may be viewed analogously to spelling: to some degree
they constitute a convention, and it is not essential that students operate with
them from day one or even in their private thinking; but eventually, as a
matter of mutual communication and understanding, it is highly desirable
that everyone (that is, nearly everyone--we recognize that there are always
exceptional cases) learn a standard way of doing the four basic arithmetic
operations. (The standard algorithms need not be absolutely unique, just as
there are variant spellings between, say, the U.S. and England, but too much
variation leads to difficulties.) We do not think it is wise for students to be
left with untested private algorithms for arithmetic operations--such
algorithms may only be valid for some subclass of problems. The virtue of
standard algorithms--that they are guaranteed to work for all problems of the
type they deal with--deserves emphasis.

We would like to emphasize that the standard algorithms of arithmetic are
more than just "ways to get the answer"–that is, they have theoretical as well
as practical significance. For one thing, all the algorithms of arithmetic are
preparatory for algebra, since there are (again, not by accident, but by virtue
of the construction of the decimal system) strong analogies between
arithmetic of ordinary numbers and arithmetic of polynomials. The division
algorithm is also significant for later understanding of real numbers. For all
its virtues, decimal notation suffers a significant drawback over, say, standard
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notation for fractions: decimal numbers (meaning decimal fractions with
finitely many terms) do not allow division. This can be remedied at the cost
of using infinite decimal expansions, but this is a big leap, and the general
infinite decimal is not rational. To understand that rational numbers
correspond to repeating decimals essentially means understanding the
structure of division of decimals as embodied in the division algorithm. We
do not see that naive use of calculators can be of much help here: the length
of repeat of a decimal will typically be comparable to the size of the
denominator, so that 7/23 or 5/29 will not reveal any repeating behavior on
standard calculators.

The paragraph above deserves amplification: the long division algorithm is an essential tool
for understanding what a real number is. We elaborate on this in the sequel, and explain the
important connections of the algorithm to more advanced parts of mathematics.

In spite of the visible support for the standard arithmetic algorithms from professional
mathematicians,  the trends in the education community against them continued and reached
a climax in October of 1999.  At that time the U.S. Department of Education, on the advice
of the education community, released a list of "exemplary" and "promising" mathematics
programs.  The standard arithmetic algorithms, and the long division algorithm in particular,
did not appear at all, or were drastically abridged, in all of the elementary school curricula on
the government's list.  In response to these and other serious shortcomings in the Education
Department's favored math programs, the authors of this paper together with over 220 other
mathematicians, scientists, and education scholars and leaders endorsed an open letter of
protest [R] to Education Secretary Richard Riley urging him to withdraw the department's
list. Among the co-signers were many of the nation's most distinguished and accomplished
scientists and mathematicians. Department heads at 16 universities including Caltech,
Stanford, Harvard,  and Yale, along with two former presidents of the Mathematical
Association of America also added their names in support. Among the endorsers are seven
Nobel laureates  and winners of the Fields Medal, the highest award in mathematics.
Nevertheless, the assault on arithmetic from education leaders continues as of this writing, in
spite of this overwhelming support from those with the deepest understanding of
mathematics.

In the next section we review the base ten structure of our number system in a form that will
illuminate a subsequent description of long division.

Place value and Division

Prior to teaching long division a teacher has to be sure that students understand place value.
This is more subtle than one might suppose, so we begin with a presentation that will lead to
a way to understand division of whole numbers.

Consider the number 946.  One way of describing this number (which has meaning
independent of the way we write it) is by estimating it through decreasing orders of
magnitude.  Observe first that 900 = 9×100 is the largest multiple of 100 that is less than or
equal to 946. So that,

9 × 100 <  946 <  10 × 100.

Now we make a similar estimation for the tens column:  900 + 4×10 < 946, while
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946 < 900 + 5× 10.  In other words,

4 × 10 <  946 – 900 = 46 <  5 × 10.

Finally, 9 × 100 + 4 × 10 + 6 × 1 < 946 <  9 × 100 + 4 ×10 + 7 × 1, or equivalently.

6 ≤ 946 – 9 ×100 – 4 ×10 < 7.

Here is the general prescription. An arbitrary whole number with the digit k in the nth
decimal means that k×10n is less than or equal to the whole number minus a the sum of
multiples of higher powers of ten that are associated to the places to the left of k. But
(k+1)×10n is bigger than this number minus the same sum of higher powers of ten
associated to the places to the left of k.

Another way to understand this approach to the base 10 structure of numbers is to use a
number line. As an example, the symbol 315 tells us that to identify this number as a point
on a number line, 3×100 would be the largest multiple of the largest power of 10 less than
or equal to 315 which is either to the left of 315 or is equal to it:

Then 1×10 is the largest multiple of 10 which is either to the left of 315 – 300 = 15 or equal
to it:

The difference 315 – 300 is located here:

Then the difference which identifies the digit in the ones column, 315 - 3×100 – 1×10 = 5,
is positioned here:
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The next step is to extend these ideas to division.  Consider the division problem,
946 ÷ 7.  Following a similar strategy as above, which leads to the standard long division

algorithm, our first step is to find the largest multiple of 7 × 100 that is less than 946.  By
inspection,

1× (7 × 100) = 700 ≤ 946 < 1400 =  2 × (7 × 100)

Note that 100 is the highest power of ten that can be used at this step. We next consider
multiples of 7× 10 and observe that,

700 + 3 × (7 × 10) = 910 ≤ 946 <  980 =700 + 4 × (7 × 10).

Analogous to what was  done above,  this last statement can be expressed as,

3 × (7 × 10) ≤ 946 – 700  <  4 × (7 × 10)

or, so the calculation would more closely look like in the standard division algorithm,

3 × (7 × 10) = 210 ≤ 246 <  280 =4 × (7 × 10)

Finally, we consider multiples of 7 × 100, i.e., multiples of 7 and observe that

5 × 7 ≤ 246 – 210 = 36 < 6 × 7

In summary,

1× (7 × 100) + 3 × (7 × 10) + 5 × 7  ≤ 946 <  1× (7 × 100) + 3 × (7 × 10) + 6 × 7.

The common factor of 7, the divisor, together with the distributive property, allows us to
rewrite this as,

7 × (1 × 100 + 3 × 10 + 5) < 946 < 7 × (1 × 100 + 3 × 10 + 6)

In other words,

7 × 135 ≤ 946 < 7 × 136.

Our division problem 946 ÷ 7 is solved. The answer is 135 with a remainder of
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946 – 7 × 135 = 1.

The Long Division Algorithm with Remainder Explained Algebraically

Just as multiplication of counting numbers is based on repeated additions, the inverse
operation of division may be understood in terms of repeated subtractions.  A useful way to
visualize 73 ÷ 6 is to think of 73 objects divided equally among 6 people.  When each
person receives one object, the number of objects is reduced by 6.  If each person receives 5
objects, the initial number 73 is reduced by 5 × 6 = 30.  The process ends when the number
of objects remaining is less than 6. In the end, each person will receive 12 objects, with one
remaining and this can be represented by

73 = 6 × 12 + 1.

The division problem 73 ÷ 6 can be posed as the search for whole numbers q and r for
which

73 = 6 × q + r  where  0 < r < 6.

More generally, the division problem a ÷ b is the search for whole numbers q and r for
which

a = b × q + r,  where  0 < r < b.

An efficient way of doing successive subtractions and solving for the numbers q and r is the
long division algorithm. For example, in order to solve 5738 ÷ 17, we may think of 17 boys
dividing 5738 apples.  Rather than asking children to guess "how many hundred apples
should each boy take?" the long division algorithm poses the problem in a much more
systematic form, though estimating remains a crucial part of the process.  Here we initially
confront the easier question, "How often does 17 go into 57?"  

The fact that

3 × 17 ≤ 57  and 4 × 17 > 57

underlies the first step in this algorithm and leads to

17 5738
3

)
51
6

Because the digit 3 is in the hundreds column, this first step corresponds to "allocating 300
apples to each boy" or to the fact that
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5738 – 17 × 300 = 5738 – 5100 = 638.

By way of continuing this process, the next step is based on the fact that

3 × 17 ≤ 63  and 4 × 17 > 63

17 5738
33

)
51
63

    51
      12

Because this 3 is written in the tens column, it corresponds to "allocating an additional 30
apples to each boy" or to

638 – 17 × 30 = 638 – 510 = 128

The final step,

17 5738
337

)
51
63

    51
      128
       119
         9

is based on

7 × 17 ≤ 128  and 8 × 17 > 128

and corresponds to "allocating a final 7 apples to each boy" or

128 – 17 × 7 = 128 – 119 = 9.

These calculations can be summarized by the equation

5738 = 17 × 337 + 9,

indicating that each boy received 337 apples, with 9 left over.  It is the requirement that
0 < r < 17 that assures a unique solution to 5736 = 17 × q + r.
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Converting Fractions to Decimals

The conversion of (finite) decimals to fractions with denominators equal to a power of 10 is
straightforward.  It involves nothing more than the very definition of a decimal expression.
But converting from a fraction to a decimal is more elaborate and involves the division
algorithm in an essential way.  The justification for this process is more subtle than is often
recognized. For example, it is easily computed that

3

4
 = 0.75

This is the result of the division calculation

4 3.00
2 8

20
20
0

.75
)

But it is seldom asked, though well worth understanding, why the long division algorithm
correctly converts fractions to decimals.  Why is it always the case that dividing the
numerator of a fraction by its denominator, using the long division algorithm, results in the
correct decimal representation of the fraction?

We postpone discussion of the case of fractions with infinite decimal expressions, and
focus in this section on fractions reduced to lowest terms whose denominators have no
prime factors other than 2 and/or 5.  This condition will guarantee that the fraction has a
terminating decimal.  The reason for this is that the conversion of the fraction a/b to a
terminating decimal is possible if and only if there are integers k and n such that

a

b
= 

k

10n

To proceed, one needs to find an integer m such that m × b = 10n for some whole number n,
for convenience the smallest value of n for which this is possible. Then,

m × a

m × b
 = 

k

10n

and m × a = k. Since the Fundamental Theorem of Arithmetic guarantees a unique
factorization of any whole number, and

10n = (2 × 5)n = 2n × 5n,

it follows that the prime factors of b (and m) must be 2 and/or 5.
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Returning to the example of 3/4, we observe that it is reduced to lowest terms and that the
only prime factor of 4 = 22 is 2.  100 = 102 is the lowest power of 10 with two factors of 2,
so to convert 3/4 to a decimal it is necessary to find the whole number k satisfying,

3

4
 = 

k

100
Cross multiplying gives,

4k = 3 × 100
or

k = 
300

4

This fraction may be reduced to an integer by dividing numerator and denominator by 4,

k = 
300 ÷ 4

4 ÷ 4
or

k = 300 ÷ 4

This tells us that k is the solution to the long division problem 4 300) , and accounting for

the decimal point, we are led to 4 3.00) .  The arguments given for this example are general
and taken together explain why long division converts fractions of the type considered here
to decimals.

Geometry of the Decimal Portion of the Quotient

In this section we use a number line to give an explanation of the long division calculation
when the quotient involves decimals. As an example, consider the calculation,

         7 946.00
7
24
21
  36
  35
   10
      7
      30
      28 

135.14

)

One way to approach the problem “946 divided by 7” geometrically is to find an interval of
a certain length L so that if we lay out 7 of them end-to-end, starting at the origin, the right
endpoint of the last will be exactly 946, that is to say 946 = 7L.  In principle, such an
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interval exists and can easily be identified.  In this case L is the rational number,  946/7, or
the length of 946 intervals laid end-to-end, each of length 1/7.  However, our goal here is to
visualize how the long division algorithm produces L as a decimal expression.  It is
necessary here and in other cases to acknowledge that L is actually an infinite decimal, and
we discuss the significance of this in the next section.  But for now, we focus on an iterative
process with decreasing length scales.

How might we take the first step to find an interval of this length.  To start we could lay out
intervals of length 7, one at a time, until  adding one more interval would put the last
endpoint to the right of 946.  We count the number of intervals.   Suppose there are k of
them. Then seven intervals, each of length k, when placed end to end on the number line, will
fall short of 946 by no more than 6 units.  The number k is 135 and 7 intervals each of
length 135 falls short of 946 by one unit.

It is fruitful to do this portion of the calculation more systematically.  First we could use
groups of intervals 100 units long (i.e., count by 700's).  We can then subtract off the
biggest multiple of 700 less than or equal to 946.  Then for what is left, count by multiples
of 10 intervals at a time (i.e., count by 70's), subtract off, and count by intervals of length
seven for what is left.  This is how the division algorithm proceeds to the units digit.

This same iterative scheme can be used to explain division past the decimal point.  In the
case at hand the remainder so far is 1. To continue,  lay out intervals of length 0.7 between
0 and 1 analogous to what was done before. For our problem, there is only one such
interval.  Subtract and we get a remainder of 0.3. Now lay out intervals of length .07
between 0 and 0.3, so there are four.  Subtract again and we get a remainder of 0.02.

As this process continues, observe that at each iteration, the remainder must be less than
7/10n for an appropriate integer n, and that n increases by one with each iteration.  At the
next step we use intervals of length 7/10n+1 so that the intervals shrink in length by a factor
of ten. Each iteration  of this process requires an estimate: find the largest integer so that
multiplying 7/10n by this integer is less than the remainder at the previous stage.  

In an appendix we will give a more detailed description of this process.  

Now let us turn to some of the points much further along in mathematics which depend
crucially on the skills and insights implicit in the long division process described above.

How Long Division Helps to Explain What a Real Number Is

A fairly standard topic in the middle school curriculum today is the decimal characterization
of rational numbers. Rational numbers are eventually repeating, when expanded out as
decimals. For example,

1/3 = .333...,

where the ellipses indicate that the numeral 3 repeats forever.  Likewise,

1/2 = .500...

and

611/4950 = .12343434...
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In the last equation, the digits 34 are repeated without end, and the repeating block in the
decimal which represents 1/2 consists only of the digit for zero.  In each case there is a
repeating block of digits, and this is true for any fraction, i.e., the (infinite) decimal
representation for any rational number must eventually have a repeating block.  

Clearly the verification of such a general result is beyond the reach of any calculator. This is
partly because infinite decimals cannot be displayed on calculator screens, but more
importantly calculators are incapable of mathematical reasoning.  The proper way to explain
this at the middle school level (where questions of convergence are inappropriate), is
through the standard long division algorithm.  The fraction 1/7 serves as a useful example to
illustrate the argument.  We perform the division 7 1.000...)  in steps.

Following the algorithm to the first stage gives,

7 1.000...
.1  

)
     7

3

At this point, the algorithm requires that the difference 10 – 7 = 3 is less than 7.  If our
subtraction had resulted in a number greater than or equal to 7, this would tell us that an
error occurred in the calculation, and we would have to start over.  At the next stage, we have,

7 1.000...
.14  

)
     7

30
     28

2
Here again, a correct calculation guarantees that the difference 30 – 28 = 2 is less than 7.
Carrying the calculation to several more stages gives,

7 1.000000
.142857

)
     7

30
     28

20
14

60
56
40
35
50
49

1

The last remainder 1 = 50 – 49 tells us something important.  The next step in the algorithm
is to find 7 10) .  But this is the same calculation that we started with at the beginning of this
division problem, and so the entire sequence in the long division process must repeat with
the same differences as before.  We therefore conclude that



13

1/7 = .142857 142857 142857...,

where the ellipses indicate that the block of numerals 142857 repeats without end.

From this example, we may easily generalize.  Since the remainder at each stage of the
standard long division process for m÷n must be between zero and n – 1, and since
eventually only the zero place digit is brought down to the start of each new stage of the
process, it follows that in at most n – 1 steps, the process must begin to repeat.  If the
remainder is ever zero, the result is a terminating decimal, i.e., a repeating decimal whose
repeating block consists only of the numeral zero. In the case of 1 ÷ 7 carried out above, the
process repeats after 6 = 7 – 1 stages when the remainder 1 reappears.  In general, the
length of the repeating block for the decimal of the reduced fraction m/n is at most n – 1.
The length of the repeating block may of course be less than n – 1, as is the case for 1/3 or
any fraction of the form m/3 when m is not divisible by 3.  

An exercise perhaps suitable for some students is to deduce that if 1/n has a maximal
repeating block of length n – 1, then for any integer m, m/n is either an integer itself, or has
a repeating block in its decimal also of length n – 1.

The long division algorithm is the essential tool in establishing that any rational number has
a repeating block of digits in its decimal representation.  The converse, that any decimal with
a repeating block is equal to a rational number, requires a different argument.  The idea is
most easily demonstrated through examples.  Consider the infinite decimal,

x = .777...

Multiplying both sides of this equation by 10 gives,

10x = 7.777...  

Subtracting eliminates the repeating decimal portion:

10x – x = 7.777... – .777...

9x = 7

x = 7/9

Therefore, .777... = 7/9.  Here is a more complicated example:

x = .576343434...

The repeating block in this case consists of 34 (one may also regard the repeating block as
43 with the basic method below unaffected).  To express x as a fraction choose multiples of
x by two different powers of 10 such that both result in decimals having only the repeating
blocks to the right of the decimal point:

100,000x = 57634.3434...

    1,000x  =    576.343434...

Subtracting gives
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100,000x – 1,000x = 57634.3434... – 576.343434...

99,000x = 57634 – 576

x = 57,058/99,000

Therefore, .576343434... = 57,058/99,000 (which can be further reduced to 28,529/49,500).
What we have done is completely general and the procedure can  be used to find the sum of
any geometric series.  This method demonstrates that any infinite repeating decimal
represents a rational number and the it even shows how to find the rational number as a
fraction. Together with the previous arguments employing the standard long division
algorithm, we arrive at an important theorem.

Theorem  Any decimal expression with an infinite repeating block represents a rational
number, and any decimal  representation of any rational number must have a repeating
block (an infinite repeating block consisting of the zero digit is a possibility).

It is only at this juncture that a sensible explanation (at the middle school level) of irrational
numbers is possible. An irrational number is an infinite decimal which does not have a
repeating block (or more precisely is a number represented by such a decimal expression).
For example,

        .101001000100001...

represents an irrational number.  The ellipses in this case indicate that each time "1" appears
it is followed by one more "0" than the preceding "1".3  Clearly this decimal has no
repeating block.  The set of real numbers consists of all rational and irrational numbers and
the definition, at this level, depends crucially on a clear understanding of, and facility with,
the standard long division algorithm.  

Some widely used middle school mathematics programs not only omit any discussion of
the long division algorithm and its role in defining the set of real numbers, but they commit
other serious errors as well.  It is sometimes asserted that 2  is irrational because
according to a calculator,

2  = 1.4142135624....

Unfortunately, this simply says that no repeat is evident up to the precision of a particular
calculator.  It does not say that no repeat occurs.  It usually requires subtle arguments to
show that a particular number is irrational.  A proof that π is irrational was unknown to
mathematicians before the 18th century.

The Role of Long Division in Algebra

A second direct application of long division occurs in studying polynomials.

A common view in math education circles is that not only long division but basic
manipulations with polynomials such as factoring, division, and partial fraction
decompositions should not appear in the K - 12 mathematics curriculum.    We will discuss
                                                
3 Thus the ones appear in exactly the places n(n+1)/2 after the decimal point, for n = 1, 2, 3, …
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the negative consequences of making this choice in the next section. For the present, we turn
to the process of polynomial long division.

One of the most basic operations with polynomials is long division with remainder.  Here
the process is almost the same as the process of long division with remainder for natural
numbers.  The major change is that the role of "highest power of 10 times the divisor" is
taken over by "highest power of x times the divisor," and the coefficients are no longer
restricted to be integers between 0 and 9.   Let us give an example to illustrate the process.
We divide  f(x) = x4 + 2x3 + 4x + 1 by g(x) = x2 + 1.  

First note that
x2 (x2 + 1) = x4 + x2.

This is the only multiple of x2 + 1 by a constant times a power of x so that the product has
degree equal to the degree of the original polynomial, f(x), with the same leading coefficient.

Subtracting  x4 + x2 from f(x), gives

2x3  – x2  +  4x + 1 .

In the notation of long division, we have computed,

x2 + 0x +1 x4 + 2x3 + 0x2 + 4x +1
x4 + 0x3 +1x2

2x3 − 1x2 + 4x

x2

)

Now iterate the process. Multiply 2x (x2 + 1) =  2x3 + 2x, and subtract the product  from
2x3  – x2  +  4x + 1 to get

–x2  +  2x + 1.

In the notation of long division, we have computed,

x2 + 0x +1 x4 + 2x3 + 0x2 + 4x +1
x4 + 0x3 +1x2

2x3 − 1x2 + 4x
2x3 + 0x2 + 2x

−1x2 + 2x + 1

x2 + 2x

)

As a final step we multiply (–1) (x2 + 1) =  –x2  – 1, and then subtract to get,

2x + 2.

Because the highest degree term in 2x + 2, 2x, has degree less than the degree of x2 + 1, we
can no longer repeat the process, so we stop with 2x + 2 as our remainder.
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This entire procedure can be expressed in the standard long division format as,

x2 + 0x +1 x4 + 2x3 + 0x2 + 4x +1
x4 + 0x3 +1x2

2x3 − 1x2 + 4x
2x3 + 0x2 + 2x

−1x2 + 2x + 1
−1x2 − 0x −1

2x + 2

x2 + 2x −1

)

We have shown that,

x4 + 2x3 + 4x + 1 = (x2  + 2x – 1) (x2 + 1) + (2x + 2).

This procedure is general. Given two polynomials, f(x) and g(x) we can always find a
polynomial l(x) and a polynomial r(x) of degree less than the degree of g(x) so that

f(x)  = l(x)g(x) + r(x)

using polynomial long division.  Note also that this process shows that the degree of l(x) is
exactly degree(f(x)) - degree(g(x)) when this number is nonnegative.

A key application of polynomial division is the situation where g(x) is linear: g(x) = x – r.
Then the result is

f(x) = l(x)(x – r) + c

where c is a constant.  Now suppose that f(r) = 0.  Then substituting x = r on both sides of
this equation we get 0 = l(r)(0) + c, or 0 = c, and it follows that, in this case, (x – r) exactly
divides f(x) with quotient l(x), which is the same thing as saying that

f(x) = l(x)(x – r).

Conversely, if f(x) = l(x)(x – r) for some polynomial l(x), it follows immediately that f(r) =
0.  Long division for polynomials leads to an important theorem in algebra.

Theorem. The number r is a root of the polynomial f(x) if and only if f(x) can be factored
as a product of x – r and another polynomial.

This theorem is valid even for complex numbers, and while the theorem can be proved
without direct reference to the long division algorithm, it is really the ideas imbedded in that
algorithm which lead to this result.

Foundation for More Advanced Applications

There are at least two separate areas where the insights gained from understanding the long
division algorithm are crucial, first calculus, and second, applications of polynomials in
advanced areas of mathematics and related fields.
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Let us discuss calculus first.  The student's experience of carrying long division past the
decimal point is his or her first experience with infinite processes of any kind converging.
At each stage the accuracy of the answer increases approximately by a factor of 10.   
Compare this with the only other infinite process we can reasonably assume students have
experienced, that of counting numbers.  At each stage we're no closer to the end than the
stage before. Polynomial long division leads in a natural way both to the geometric series
and to the priliminary expansion (1 – xn+1) = (1 – x)( 1 + x + x2 + x3 + … + xn).

The development of polynomial long division up to this point is modeled on the assumption
that higher powers of x are larger than lower powers, just as 1015  is larger than 105.
However, the reverse assumption is often equally valid – that higher powers of x become
much smaller than lower powers, as, for example happens when x = 0.1.  This leads to a
second approach to long division for polynomials.  For example, consider the problem of
dividing 1 by (1 – x).  By iterating the long division process, using higher powers of x as
remainders, we obtain the expression

1/(1-x) = 1 + x + x2 + x3 + … + xn  with remainder xn+1.

This gives a basic formula with innumerable applications.  For example, it provides the
underpinnings of compound interest, and further in the future, functions such as the
exponential function.  (The exponential function arises by letting the time between
compounding periods approach zero, or, as one might say, considering continuous
compounding.)

More advanced topics also depend on basic polynomial manipulations of the type described
above. An early application in the university curriculum occurs in calculus courses, where
students learn how to use the partial fraction decomposition to integrate rational functions
(quotients of polynomials). Previous to this the students have learned the rules for
integrating simple polynomials and some trigonometric functions, all of which are quite
direct, following basically from the definitions and the fundamental theorem of calculus.

But it turns out – unfortunately only much later – that the partial fraction decompositions
play a unique and important role in modern applications of mathematics.  They form the
basis for the techniques needed for using the Laplace Transform in handling systems of
linear differential equations, and consequently for many areas of engineering.  Indeed,
engineers in any area which involves control systems – aeronautical engineering, mechanical
engineering, and much of electrical engineering – will confirm that most of what they do
depends on Laplace Transforms.

There is reason to believe that students who wish to enter technical areas but have had only
minimal experience with polynomials and none with partial fraction techniques are at a
severe disadvantage, and at least some are forced to give up their aspirations.

Of course, the applications to the Laplace Transform discussed above are not the only, nor
the best known uses of basic polynomial operations in vital applications of mathematics.
The other major area of application is linear algebra.  Here, manipulations involving the
characteristic polynomial are critical in determining the eigenvalues and eigenvectors of
linear transformations, which in turn have basic applications to economics, the social
sciences, as well as the physical sciences and engineering.
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Appendix:  A Detailed Geometric Approach to Long-division

Let us consider the problem 946 ÷ 7.  Note that the quotient is less than 1000 since  946
< 7×1000, so 946 ÷  7 < 1000.  Also, the quotient is greater than 100 since 7×100 < 946, so

100 = 7×100 ÷  7 < 946 ÷ 7.

We see that if we want to know which is the smallest power of 10, 10k, that is greater than
946 ÷  7 we have to find the first time that 7×10k is greater than 946,  not simply the first
time that 10k is greater than 946.  Similarly, if we want to find the smallest power of 10, 10s

that is bigger than 13,123 ÷  17 we have to look for first time that 17×10s is bigger than
13,123.

We can look at division on the number line as well.

Let us consider the problem of 946 ÷ 7 again.  This time we start by placing 946 on the
number line.
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Next repeat this same picture, but also put in multiples of 700.

Note that 946 is between 700 and 1400.  Hence 946 ÷  7 is between 700 ÷  7 = 100 and
1400 ÷  7 = 200.  More exactly, 946 ÷  7 is bigger than 100 but less than 200.  Next we
take a finer mesh between 700 and 1400.  If we divide the distance between 700 and 1400
(which is 700) into 10 equal segments, then each segment will be 70, since 10×70 = 700.

We see that 946 lies between the third and the fourth tic, that is, it lies between 910 and 980.
So we have that 7×100 + 3×7×10 is less than 946 while 7×100 + 4×7×10 is greater than
946.  

Rewriting, we have that

7× (100 + 3 ×10) < 946 < 7×(100 + 4×10)

So 130 = (100 + 3×10) <  946 ÷  7 < 140 = (100 + 4×10).

We can enlarge the picture and repeat the process, concentrating on the interval between 910
and 980, which has length 70.  If we divide it into 10 equal segments, each segment will
have length 7.

Repeating the argument we see that 946 lies between 945 which is

7×100 + 7×3×10 + 7×5×1
or

7×(100 + 3×10 + 5×1)
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and 952 which is 7×(100 + 3×10 + 6×1). Consequently,  946 ÷  7 lies between

135 = (100 + 3×10 + 5×1)
and

136 = (100 + 3×10 + 6×1).

At this point we could stop and say the difference between 135×7 and 946 is 1, so 946 =

7×135 + 1, and since 0 < 1 < 7 we stop and proclaim that 7 divides 946 a total of  135 times
with a remainder of 1.  This is appropriate for the first level of development of long-
division. One can proceed naturally from this point to the development of the long division
algorithm with remainder. It is also possible to continue the discussion of the approximation
method for understanding what division is about.

Suppose that we repeat the process.  If we break the interval between 945 and 952 which
has length 7 into 10 equal parts, each part will have length 7 / 10 or 0.7, and we can
expand the picture above as:

Consequently we have that

(7×135 + 1×7×.1) = 945.7 < 946 < (7×135 + 2×7×.1) = 946.4
and dividing by  7,

135.1 < 946 ÷  7 < 135.2.

For emphasis one can expand the diagram one more time, noting that the interval between
945.7 and 946.4 has length .7, so that if we break it up into 10 equal segments, each will
have length .07:

Consequently, we have that

(945.7 + 4×7×.01) = 945.98 < 946 <  (945.7 + 5×7×.01) = 946.05
or dividing by 7,

(135.1 + 4×.01) = 135.14 <  946 ÷  7 <  (135.1 + 5×.01) = 135.15.

At this point we have probably gone far enough.  We should not lose sight of the
remainder of course, so we should mention that, in fact, since
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7× (135.14) = 945.98
we can write, more exactly

946 = 7× (135.14) + .02

or, to two decimal places 946 ÷  7 = 135.14 with a remainder of .02.

Note that the remainder is always positive, since we choose to approximate from below in
all cases.

How might one proceed from the analysis of the division process above to a long-division
algorithm?

One way would be to say that we don't really need the number line to help us. How did we
begin?  We decided that we would use gaps of 700's to divide the line up into multiples by 7
of 100, and see which of these was closest to 946 but still less than it.  Why did we do that?
Because this is the biggest number of the form a power of 10 times 7 which is still less than
946.  If we had started by using gaps of 7000, they would have been too big, and if we'd
used gaps of 70 they'd have been too small since 10 gaps of 70 only give 700.

As an example, if we'd decided that we wanted to divide 9467 by 7, then we would start with
gaps of 7000, and 1×7000 < 9467 < 2×7000 so

1000 <  9467 ÷   7 < 2000.

In any case, we decide that gaps of 700 are what we use to start, and 946 lies in the second
gap, so 946 – 700 must be less than 700.  

NOTE:  this phrase is the critical step.  It must be understood!

At this point, we no longer need to worry about 946, but we can focus on 946 - 700 = 246.
What we did, at the next stage, dividing the gap between 700 and 1400 into 10 steps is just
the same as dividing the gap between 0 and 700 into 10 steps, finding out where 246 lies in
this subdivision (between 3×70 and 4×70), and writing 946 - 700 - 210 = 36.

Now we need not worry about 246 or 946 any more, we only need to worry about 36.  So
we divide the interval between 0 and 70 into 10 equal steps of length 7, and see that 36 is
between 5×7 and 6×7.  We then have 946 – 700 – 210 – 35 = 1, or

946 = 7× (100 + 3×10 + 5×1) + 1.

The analysis of the concept of the algorithm is now complete. What remains is to find a way
of implementing it, and at this point we should be able to just write down the long-division
algorithm.


