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AN ERGODIC ADDING MACHINE ON THE CANTOR SET

by Peter COLLAS and David KLEIN

ABSTRACT.  We calculate all ergodic measures for a specific function F on the unit
interval.  The supports of these measures consist of periodic orbits of period 2n  and the
classical ternary Cantor set.  On the Cantor set, F is topologically conjugate to an “adding
machine” in base 2.  We show that F is representative of the class of functions with zero
topological entropy on the unit interval, already analyzed in the literature, and its behavior is
therefore typical of that class.

I.    INTRODUCTION

The dynamical behavior of the quadratic function f c x( ) = x2 - c  has been

extensively studied as the parameter c is varied.  For example, c0  = 1.401155189...is the

smallest value of c for which f c x( )  has infinitely many distinct periodic orbits [1-3].  As c

approaches this number through smaller values, the dynamical system, x Æ fc x( ) ,

progresses through the famous period doubling route to chaos.  When c = c0 , the

dynamical behavior of f x( ) ≡ f c x( )  includes the following properties:

1.  There is a Cantor set K which is an attractor and f: K Æ K

2.  All periodic points of f have period 2n  for some n.

3.  There are periodic points which are arbitrarily close to K.   

4.  With the restriction of f(x) to an appropriate interval I such that f(I) Ã I, there are just

     two possibilities for the  orbit of a point x0 Œ I :  either f k x0( )  is in a periodic orbit

     for some k, or f k x0( )  converges to K as k increases.                    

 5.  The restriction of f to K is topologically equivalent to a function on 2-adic integers

     which adds 1 to its argument (this “adding machine” will be described in detail below).
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The Cantor set K is sometimes called a Feigenbaum attractor. When m = 3.57..., the well-

known logistic function gm x( ) = mx 1 - x( )  exhibits the same dynamical properties [4].  In

fact, a large class of dynamical systems exhibiting the properties 1 through 5 has been

studied and the ergodic properties analyzed [2,3,5].

A particularly simple example of a dynamical system on the interval [0,1] satisfying

1 through 5 was given and studied by Delahaye [6] and, in a slightly different form, its

topological properties (including 1–5) were given in the statements of a series of exercises

by Devaney [7].  The function may be described through the concept of the “double” of a

function (cf. ref. 7) as follows: Let f 0 x( ) ≡ 1
3  and define f n x( )  recursively by

                             f n+1 x( ) =

1
3 fn 3x( ) + 2
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It follows that F is continuous on [0,1] and that it is its own double, i.e.,
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The function F is shown in figure 1.  The notion of the double of a function and its use in

studying dynamical systems goes back to Sharkovskii [8].  A general definition of the

double of a function, however, will not be needed here.

FIGURE 1

Eq. (3), the adding machine

We will show in the sequel that the function F, like x2!–!c0, is not chaotic. F closely

models the behavior of the quadratic function x2!–!c at the critical value c0 (and many other

functions at corresponding critical values of an associated parameter as well) beyond which

chaos is present. In addition, the sequence fn , in its approach to F, exhibits the classical

period doubling bifurcations, characteristic of the onset of chaos [7].  The function F is a
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simple model for understanding the point of transition from nonchaotic behavior to chaotic

behavior.  In this note we summarize the topological properties of the dynamcal system x

Æ F(x) in the form of Theorems 1.1 and 1.2 below and then show how ergodic theory may

be used to further analyze the dynamical system.  We then indicate how this system may be

understood from a more general context developed by Misiurewicz [2,3] involving

topological entropy.

   We refer to the following commonly used terms (cf. ref. 7).  The point y0  is a fixed

point of F if F y0( ) = y0 .  The point y is a periodic point of period n if F n y( ) = y .  The

least positive n for which F n y( ) = y  is called the prime period of y.  Hereafter when we

refer to a periodic point of period n it shall be understood that n is the prime period.  The set

of all iterates of a periodic point is a periodic orbit.  We shall denote the set of periodic

points of period n by Pern F( ) .  Finally a point x is eventually periodic of period n if x is

not periodic but there exists a j>0 such that F n+ i x( ) = Fi x( )  for all i ≥ j.  In other words

although x is not itself periodic, an iterate of x is.

FIGURE 2

 Three stages on the way to the Cantor set

 Theorem 1.1 below makes reference to the classical ternary Cantor set in [0,1].  We

will use the following labeling:  The "middle third" intervals that are removed on the way to
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obtaining the Cantor set are labeled A n
k , for example, A 0

1 ≡ A0 = 1
3 , 2

3( ) , A 2
4 = 25

27, 26
27( ) ,

(figure 2).  Set 
  
A n = An

k

k =1

2 n

U . Thus A n  consists of 2n  intervals which we number  from left

to right.  We let A n-1( )c
≡ In , and 

  
In = In

k

k=1

2n

U , so that In  also consists of 2n  intervals

which we again number from left to right.  So, for example, I1
1 = 0, 1

3[ ] , I3
8 = 26

27,1[ ],  (figure

2), but I0 = 0,1[ ] .  Denote the ternary  Cantor set by 
  
I• = In

n =0

•

I .  It is well-known, and

easily deduced, that a real number in [0,1] is in the Cantor set I• if and only if it has a

ternary expansion (“base 3 decimal expansion”) of the form 0.a1a 2a3... , where ak = 0

or 2 for each k.

 Delahaye’s results and Devaney’s exercises are slightly extended by Theorem 1.1

below.

THEOREM 1.1.  The function  F: [0,1] Æ [0,1] given by (2) satisfies the following

properties:
(a)  For each n, F is a cyclic permutation on the collection of intervals In

k :k = 1,... ,2n{ } ,

       i.e., for given k,  F 2n
In

k( ) = In
k ,   and for any  p ≠ k , p =1,... ,2n ,  F j In

k( ) = In
p  for  

       precisely one j between 1 and 2n – 1.

(b)  For each  n = 0, 1, 2,..., F has exactly one periodic orbit with  period 2n  and no other        

       periodic orbits.  
(c)  Every  periodic  orbit  is  repelling.  Per2n F( ) Ã An  and A n

k  contains exactly one point

       from Per2n F( )  for each k = 1, ..., 2n  and each nonnegative integer n.                                                                

(d)  Each point is eventually periodic or converges to I•  under repeated iterations of  F.

We briefly sketch part of the proof of Theorem 1.1.  For n≥2, it can be shown,

using induction on n, that
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F In
k( ) = In

G(k) ,

where

G k( ) =

k - 2n-1 for 2n -1 +1 £ k £ 2n

2n for k = 1

k + (2N+1 - 3)2n- N-1 for 2 £ k £ 2n-1
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Ô 

and where N = n -
logk
log2

È 
Î 

˘ 
˚  (and [ ] denotes “integer part”).   Part (a) of Theorem 1.1 may

now be deduced using this formula and (3).
To check part (b), observe that if x Œ 1

3 , 2
3[ ] , then iterates of x by F will eventually

move out of 1
3 , 2

3[ ]  and never return (see figure 1).  If x Œ 0, 1
3[ ] , then F x( ) Œ 2

3 ,1[ ], and if

x Œ 2
3 ,1[ ] , then F x( ) Œ 0, 1

3[ ] .  Therefore F has no odd periods.  An induction argument

shows that if x Œ 0, 1
3[ ] , then F 2n x( ) = 1

3 F n 3x( ) .  To show F does not have any even period

orbits other than period 2n  orbits, suppose that there is a period 2n k  orbit, where k!>1 is an
odd number and n ≥ 1.  If x Œ 0, 1

3[ ]  and F 2n k x( ) = x , then F2n -1k 3x( ) = 3x  and

3x Œ Per2n -1 k F( ) . Therefore there is an x Œ 0, 1
3[ ]  such that F 2n-1 k x( ) = x .  Continuing in

this way we will reach a point such that F k y( ) = y , which is impossible since there are no

odd period orbits.  The existence of a unique orbit of period 2n  follows from (3) and

induction on n.

The proofs of parts (c) and (d) use similar ideas and are outlined in the exercises in

ref. 7.   r 

We turn now to a description of the “adding machine” on the ternary Cantor set

and its relationship to F.

A 2-adic integer is an infinite sequence  x = x0,x1,x2,...( )  where xi = 0  or 1.  The

collection S of all 2-adic integers is a metric space with the metric d x, y( ) = 2-n  where

y = y0,y1,y2,...( )   and n is the smallest integer for which xn ≠ yn .  S is the completion of

the nonnegative integers with this metric under the identification of the (base 2) integer
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           m = x0 + x1 21 + x2 22 +...+xn 2n

with the sequence

  

          x0, x1,x2,.. ., xn ,0, 0, 0,. ..( ) . (4)

Define a base 2 addition on S  by

x + y = z = z0,z1,z2 ,. ..( ) ,

where z0 = x0 + y0  if x0 + y0 £ 1, z0 = 0  if x0 + y0 = 2  in which case 1 is added to

x1 + y1, which otherwise follows the same rules.  The numbers z2, z3,.. .  are successively

determined in the same manner.  Thus, if x = x0,x1,x2,... ,xn, 0, 0, 0,. ..( )  and

y = y0,y1,y2,... ,yk ,0, 0, 0,. ..( ) , then x + y  corresponds to the usual base 2 arithmetic

addition of integers under the identification (4). S is a commutative, compact topological

group with this addition.  Let us denote the element  1,0, 0, .. .( )  of S by 1.  Define a map

h:I• Æ S  as follows:  If x ŒI•  has base 3 expansion 0.a0a1a 2.. . , where each ai = 0  or

2, then h x( ) = x0 ,x1,x2 ,. ..( ) , where xi =1 -
ai
2 .  For example,

                                h 0.02022...( ) = 1, 0,1,0, 0,. ..( ) .

Theorem 1.2 below was also stated in the same set of exercises in Devaney [7].  We supply

the proof for the convenience of the reader.

 

THEOREM 1.2.  (a)  The function h is a homeomorphism from the ternary Cantor set   

                                           I• to the 2-adic integers S.

                                    (b)  F I•( ) = I• , and F restricted to I•  is topologically conjugate by    
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                                           h to the addition of 1 on 2-adic integers, i.e.,    

                                           h F x( )( ) = h x( ) +1 .

                                    (c)  The F-orbit  of each point in I• is dense in I• .

Proof.  (a) h is clearly one-to-one and onto.  To see that h-1  is continuous, let e > 0

be given and choose n so that  3-n-1 < e   and let  d = 2-n .  If  x, y Œ S   and  d x, y( ) £ d ,

then        

  
            h-1 x( ) - h-1 y( ) = 0.000...0ana n+1... (5)  

where the first n–1 digits on the right side of (5) are zeros and the number on the right is
expressed in base 3 so that ak = 0  or 2.  Consequently h-1 x( ) - h-1 y( ) £ 3-n -1 < e .

Since h-1  is a continuous bijection and I• is compact, it follows from a well-known

theorem in topology that  h  is continuous and therefore h is a homeomorphism.
(b) Suppose x ŒI• « 2

3 ,1[ ]  and let the base 3 expansion of x be given by

x = 0.2a1a2a3... ,  thus h x( ) = 0, x1, x2 ,. ..( ) , where xi =1 -
ai
2 .  Then F x( ) = x - 2

3  has

base 3 expansion given by F x( ) = 0.0a1a2a3.. .  .  Therefore h F x( )( ) = 1,x1,x2 ,...( )  which

is the same as h x( ) +1 . If x = 0, then h F 0( )( ) = 0, 0, 0, ...( ) = h 0( ) + 1 .  If x ŒI• « 0, 1
3( ],

then x Œ 2
3i , 1

3i -1[ )  for some i ≥ 2 .  A brief calculation shows that

  F x( ) = x + 0.2.. .2
i -2}

11
Ø
i

0          (6)

where the number on the right is expressed in base 3 and the second “1” occurs i places

after the decimal point.  It now follows from (6) and base 3 addition that h F x( )( ) = h x( ) +1

and therefore F I•( ) = I• .

(c) Since S is the completion of the nonnegative integers under the identification (4),

the set  
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             x0, x1,x2,.. ., xn ,0, 0, 0,. ..( ) : n = 0,1,2,. .., xi = 0 or 1{ }
which equals n1:n = 0,1,2, .. .{ }  is dense in S.  It is easy to establish that the map which

takes x to x + z  is a homeomorphism from S to S for any fixed z Œ S .  Thus

n1:n = 0,1,2, .. .{ } + z

is dense in S for any z .  But h-1 n1:n = 0,1,2, .. .{ } + z( )  is precisely the F-orbit of h-1 z( ) .
Therefore the F-orbit of any y = h-1 z( ) ŒI•  is dense in I•.    r   

II. ERGODIC MEASURES FOR F

A measure m on a set X is called a probability measure if m(X) = 1; the pair (X, m) is

then called a probability space.  Given a measurable transformation T:XÆX on a probability

space (X, m), m is T-invariant  if m = m° T-1, i.e., for any measurable set B!Ã!X, m(B) = m( T-

1(B)).  The probability measure m is ergodic if T-1 A( ) = A  implies that m(A) is 0 or 1.

One way to study the attracting, often fractal, sets of a dynamical system (for

example the ternary Cantor set for F) is to study the invariant probability measures which

are supported on the attractors.  (The support of a measure on [0,1] is the intersection of all

closed subsets of [0,1] whose complements have zero measure.) This is an especially

fruitful approach when the attracting set lies in a high dimensional space so that a purely

geometric description is unfeasible (cf. ref. 9).  Particularly important, though generally

difficult to find, are the invariant ergodic probability measures for the dynamical system.   

For Devaney’s transformation F:[0,1]!Æ![0,1], we will find all F-invariant ergodic

probability measures.

To construct a probability measure on I•, we borrow some ideas from the theory of

iterated function systems as developed by Barnsley [10].  Let P[0,1] denote the set of all

Borel probability measures on [0,1], i.e., probability measures on the s-algebra generated by

all open sets on [0,1].  For any m,n Œ P[0,1], define
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     d m, n( ) ≡ sup fdm - fdnÚÚ : f: 0,1[ ] Æ 0,1[ ] and f x( ) - f y( ) £ x - y , "x,y Œ 0,1[ ]{ } .

Then d is a complete metric on P[0,1].  Let w1, w2 : 0, 1[ ] Æ 0,1[ ]   by w1 x( ) = 1
3 x  and

w2 x( ) = 1
3 x + 2

3 .  Let M: P[0,1] Æ P[0,1] by   M m( ) = 1
2 m o w1

-1 + 1
2 m o w2

-1 .  M is called the

Markov operator for an iterated function system defined by w1, w2 .  It follows as a

special case of a more general theorem from ref. 10 that

d M m( ) ,M n( )( ) £ 1
3 d m, n( ) , (7)

so that by the well-known contraction mapping theorem, M has a unique fixed point n• ,

i.e., M n•( ) = n• .  

Notice that the intervals In
k  defined above are in one-to-one correspondence with

iterations of the form 
  
wi1

o wi2
oLowin

0,1[ ]( ) , where ik  = 1 or 2.  For example,

  
w1 ow 2 0,1[ ]( ) = 2

9 , 1
3[ ] ≡ I2

2 .

LEMMA 2.1.  For all n ≥ 0 and k £ 2n , n• In
k( ) = 2-n .

Proof.  The proof follows by induction.  For n = 0, I0
1 = 0,1[ ]  and

n• 0, 1[ ]( ) = 1 = 20  because n• is a probability measure.  Assume M(n•) = n• and the

induction hypothesis, 
  
n• In

k( ) = n• wi1
o wi2

oLowin
0,1[ ]( ) = 2-n  for any sequence

  i1,K, in  and any k ≤ 2n.  For any j ≤ 2n+1, there is a sequence   i1,K, in+1  such that

  
n• In+1

j( ) = n• wi1
o wi2

oLowin
o win +1

0,1[ ]( )

   
  
= 1

2 n• o w1
-1 wi1

o wi2
oLow in

o win+1
0,1[ ]( )
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+ 1

2 n• o w2
-1 wi1

o wi2
oLowin

o win +1
0,1[ ]( ) .  (8)

Notice that 
  
n• o wj

-1 wi1
o wi2

oLowin
o win+1

0,1[ ]( ) = 2-n  or 0  depending on whether

j = i1 .  Combining this observation with (8) shows n• In+1
j( ) = 1

2 2-n = 2-n-1.    r

PROPOSITION 2.1.  The measure n• is supported on the Cantor set  I•.

Proof.  By Lemma 2.1 n• In( ) = n• (In
k )

k =1

2 n

Â = 2n2-n = 1  for all n. Since

Io… I1… I2… . . . is a decreasing sequence,  n•(I•) = n•(
  n =1

•

I In) = lim
n Æ•

n•(In) = 1. If C is a

proper closed subset of I•, there is an open interval U in the complement of C whose

intersection with I• is nonempty .  Let x Œ U « I•.  For some positive integers n and k,

x ŒIn
k Ã U .  Then since In

k is in the complement of C, n• C( ) £1 - 2-n <1 .    r

The next step is to show that n• is an invariant measure for the dynamical system

F:[0,!1]!Æ [0, 1].  This means that   n• = n• o F-1 , i.e., for any Borel set B Ã [0, 1],
n• B( ) = n• F-1 B( )( ) .

LEMMA 2.2.  If m is any probability measure on [0, 1] and m In
k( ) = 2-n  for all n and

k, then m = n• .
Proof.  The condition m In

k( ) = 2-n  implies that m x{ } = 0  for every x Œ 0,1[ ] .  This

is clearly true if x œI•   since m I•( ) =1 , as follows from the proof of Proposition 2.1.  If     

x ŒI• , then for every n there exists a k such that x ŒIn
k .  Thus m x{ } £ 2-n  for every n and

hence m x{ } = 0 .

Any interval of the form a, b[ ] Ã 0,1[ ]  where a and b have finite ternary expansions

(finite “decimal” expansions in base 3) is a disjoint union of sets of the following form:

1) In
k for some n and k

2) intervals in the complement of In for some n
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3) {a}, {b}

Since m and n• agree on each of the sets in 1, 2, and 3, m[a, b] = n•[a, b].  It is a standard

result in measure theory that two probability measures which are equal on a collection of

measurable sets, closed under finite intersections, are equal on the s-algebra generated by

that collection.  In this case the s-algebra generated by sets of the form [a, b] Ã [0, 1] where

a and b have finite ternary expansions is just the Borel s-algebra on [0, 1].    r

It is well-known [11] that the "adding machine" is uniquely ergodic.  This fact may also be

deduced from Proposition 2.2 below.

PROPOSITION 2.2.  n•  is invariant under F.  If m  is a probability measure invariant

under F and m I•( ) =1 , then m = n• .

Proof.  To show that  n•  is invariant under F, it suffices by Lemma 2.2 to show that

n• F -1 In
k( )( ) = 2-n

for all k and n.  By Theorem 1.1 (a), given k there exists a unique integer j such that

In
j Ã F -1 In

k( ) Ã In
j » 0,1[ ] \ I• (9)

(because F is a permutation on the intervals in In). Thus,

2-n = n• In
j( ) £ n• F -1 In

k( )( ) £ n• In
j » 0,1[ ] \ I•( ) = 2-n .

Hence n• is invariant under F.  Suppose m  is a probability measure invariant under F  and

m I•( ) =1 . Then by (9) and F-invariance,

m In
j( ) £ m F-1 In

k( )( ) = m In
k( ) £ m In

j » 0,1[ ] \ I•( ) = m In
j( ) . (10)
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Since F is a cyclic permutation on the intervals in In, for any n and any positive integers
j,k £ 2n , m In

j( ) = m In
k( ) .  As there are 2n intervals of the form In

k  in In, it follows that

m In
k( ) = 2-n for all n and k.  Therefore, m = n• , by Lemma 2.2.    r                                               

                                                                             

         Before investigating the ergodicity of n• , we introduce some other invariant

measures for F.  For a fixed x Œ 0,1[ ] , let dx  be the probability measure on 0,1[ ] which

assigns 1 to any Borel measurable set containing x and assigns 0 to all other measurable

sets.  The probability measure dx  is sometimes called the “point mass at x” or the “Dirac

delta function at x.”  For each nonnegative integer n, let yn be the smallest number in 0,1[ ]

which lies in the unique orbit with prime period 2n for the function F  and define

nn =
1
2n dFk (yn )

k =0

2 n -1

Â . (11)

The measure nn assigns mass 2–n to each point in the unique orbit with period 2n of F, i.e.,

nn B( ) = k2-n  if B contains exactly k points from P n ≡ Per2n F( ) .  It is not difficult to

check that for each n = 0, 1, 2, ...,  nn is invariant with respect to F, and nn  is the only

F–invariant probability measure on the set of points Pn.

Let  C 0,1[ ]  be  the  Banach  space  consisting  of  all  continuous  functions  with

the maximum norm  given by f ≡ max f x( ) : x Œ 0,1[ ]{ } .  Let

M F 0,1[ ]
  
≡ m ŒP 0,1[ ] :m = m o F -1{ }   be the set of invariant probability measures on 0,1[ ] .

M F 0,1[ ]  may be identified in a natural way with a metrizable, compact, convex subset of the

dual space of  C 0,1[ ] .  The compact, metrizable topology on M F 0,1[ ]  is the weakest
topology which makes the map m Æ f x( )Ú m dx( )  continuous for each f Œ C 0,1[ ]; it is

called the vague or weak-*  topology.  An extreme point of the convex set M F 0,1[ ]  is a

measure m  which is not a convex combination of any other two points in M F 0,1[ ] , i.e., m  is
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extreme if whenever m = am1 + 1- a( )m2 , 0 < a < 1, and m1,m2 ŒMF 0,1[ ] , then

m = m1 = m2 .  It is a consequence of the Krein-Milman Theorem that the set of extreme

points of M F 0,1[ ]  is non-empty.  The following theorem is a specialization of a well-known

result in ergodic theory (see for example ref. 12).

THEOREM 2.1.  The F-invariant measure m is an extreme point of M F 0,1[ ]  if and

only if m is ergodic with respect to F on [0, 1].

As a consequence of Theorem 2.1, we have the following proposition.

PROPOSITION 2.3.  For each n = 0,1,2,..., •, nn  is an extreme point of M F 0,1[ ]  and

is therefore ergodic with respect to F.

Proof.  Consider the case n = •.  Suppose there exist F-invariant probability

measures m1 and m2  and a Œ 0,1( )  such that n• = am1 + 1- a( )m2 .  Then since

n• I•( ) = 1, m1 I•( ) = m2 I•( ) =1 .  Then by Proposition 2.2, m1 = m2 = n• .  Thus n• is an

extreme point of M F 0,1[ ]  and is ergodic by  Theorem 2.1.  The cases, n = 0,1,2,...  are

handled in the same manner.    r    

PROPOSITION 2.4.  The measures n0 ,n1,n2,... ,n• are the only probability measures

on 0,1[ ]  ergodic with respect to F.

Proof.  Let m  be an F-invariant probability measure with support A m .  Let

℘≡ x Œ 0,1[ ] : Fk x( ) ŒPn for some k, n{ }  be the set of periodic or eventually periodic

points.  By Theorem 1.1  A m !\!℘ Ã 
  

F -k (In )
k= 0

•

U  for each n.  Thus

m  (A m  \ ℘) ≤ m (
  

F -k (In )
k= 0

•

U ) .

Since   In Ã F -1 In( ) Ã F-2 In( ) ÃL  is an increasing sequence of sets,
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  m (
  

F -k (In )
k= 0

•

U ) = lim
kÆ•

m F-k In( )( ) = m In( ) ≥  m  (A m  \ ℘)

for all n.  Since 
  
I• = In

n =1

•

I  , is a decreasing sequence of sets,

m (I•) ≥ m  (A m  \ ℘).

Similarly,

     m (
  

F -k (Pn )
k= 0

•

U ) = lim
kÆ•

m F-k P n( )( ) = m Pn( ) ≥  m  (A m  « 
  

F -k (Pn )
k= 0

•

U )

Thus,

        m (
  

P n
n =0

•

U ) = m P n( )
n =0

•

Â ≥  m  (A m  « ℘) .

Since A m  = (A m  \ ℘ )» (A m  « ℘), it follows that

       
  

1 ≥ m I• » Pn
n= 0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ = m I•( ) + m Pn

n= 0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

          ≥ m (A m  \ ℘) + m  (A m  « ℘) = m (A m ) = 1.

Hence 
  

m I• » Pn
n=0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ =1 .

From Theorem 1.1  
  

An \ P n
n=0

•

U
n =0

•

U  is a union of open intervals.  Therefore

                                               
  

I• P n
n =0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ U

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

c

= An
n =0

•

U \ Pn
n= 0

•

U
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is open.  Hence  
  

I• P n
n=0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ U  is a closed subset of [0,1].   Since 

  

m I• » P n
n =0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 1  the

definition of the support of a measure implies that 
  
A m Ã I• » P n

n =0

•

U .

Since F is a continuous function and A m  is closed, F -1 Am( )  is also closed.  By F-

invariance, m F-1 A m( )( ) = 1 and therefore A m Ã F -1 Am( ) .  Hence F Am( ) Ã Am .  Suppose

A m « I• ≠ ∅ and let x ŒA m « I• .  Then F k x( ) ŒAm « I• for all k.  Since by Theorem

1.2 the orbit of x is dense in I•  and A m « I• is closed, it follows that A m « I• = I• , i.e.,

I• Ã Am .  A similar argument shows that if A m « Pn ≠ ∅ , then P n Ã Am .

Thus A m  is a union of one or more of I•,P0 ,P1, P2 ,... .  Furthermore, if m I•( ) =1

then by Proposition 2.2, m = n• .  Similarly if m Pn( ) = 1 for some n, then m = nn .  If

0 < m I•( ) <1 , then

                   
  

F -1 F-k I•( )
k= 0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ = F -k I•( )

k =0

•

U

is an invariant set for F and

  

m F-k I•( )
k= 0

•

U
Ê 

Ë 
Á 

ˆ 

¯ 
˜ = lim

kÆ•
m F-k I•( )( ) = m I•( ) .

Therefore m  is not ergodic.  Similarly if 0 < m P n( ) < 1, then m  is not ergodic.    r

Using the above results and some general theorems from ergodic theory, it is

possible to give alternative descriptions of the measure n•.  The following theorem may be

found in ref. 12.
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THEOREM 2.2.   Let X be a compact metric space, T: X Æ X a continuous map, and

assume n is the unique probability measure on X which is invariant with respect to T.

Then for any continuous real valued function f on X,

                    1
N

f(Tk (x))
k= 0

N-1

Â  Æ f dnÚ           (12)

uniformly for all x Œ X.  

Note that by the Birkhoff Ergodic Theorem the convergence in (12) holds for any integrable

function f pointwise for almost all x Œ X.  Before applying Theorem 2.2 to F, we cite the

following special case of a theorem of Choquet [13].

THEOREM 2.3.  For any m ŒM F 0,1[ ]  there exists a Borel probability measure mm

on the set of extreme points of M F 0,1[ ]  such that  m = nmm dn( )Ú . 

PROPOSITION 2.5.  For any continuous function f on 0,1[ ]

                  (a)  f (x) n• (dx)Ú  = lim
NÆ •

1
N

f(Fk (x0))
k= 0

N-1

Â  for all x0 not eventually

                                     periodic, and uniformly for all x0 in I•.

                  (b) f (x) n• (dx)Ú = lim
nÆ •

f (x) nn (dx)Ú  = lim
nÆ •

1
2n f(Fk (yn )

k= 0

2n -1

Â )  

                        where yn is the  smallest number in Pn.

Proof.  Part (a) follows from Theorem 2.2 with X = I• and Theorem 1.1.  To prove

part (b) consider the sequence nn{ }  in M F 0,1[ ] .  Since M F 0,1[ ]  is compact and metrizable

in the vague topology any subsequence of nn{ }  has a convergent subsequence.  Let nn k{ }
be a subsequence of nn{ }  converging to m ŒM F 0,1[ ] .  By Proposition 2.4 and Theorem

2.3,
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         m = a0n0 + a1n1 + a2 n2 +L+a• n•

for some sequence of nonnegative real numbers an{ }  such that an
n =0

•

Â + a • = 1.  For ease

of notation, denote by nn f( )  the integral f (x) nn (dx)Ú , then for any continuous function f

on 0,1[ ] ,

     nn k
f( ) Æ a0 n0 f( ) + a1n1 f( ) + a2 n2 f( )+L+a• n• f( ) (13)

as k Æ • .  Let f be continuous on 0,1[ ] , f ≡ 0 outside of the open interval A 0  and

f y0( ) =1  (where as before F y0( ) = y0  is the unique fixed point and smallest number in the

period 1 orbit). By Theorem 1.1 nn f( ) = 0  when n ≥ 1 and n0 f( ) = 1.  It follows that

a0 = 0 .  Choosing a continuous function f such that f yn( ) = 1 and f ≡ 0 outside of the

open set An–1 and using a similar argument shows that an = 0 for each integer n.  Since m

is a probability measure, it follows that a• =1 .  Thus m = n• .  Since every subsequence of

nn{ }  has a subsequence converging to n• , it follows that

nn Æ n• (14)

in the vague topology of M F 0,1[ ] , which is equivalent to part (b) of Proposition 2.5.    r

Part (a) of Proposition 2.5 may be understood in an intuitive way.  Consider a

system with initial “state” x0 Œ 0,1[ ] , whose state at integer time n is given recursively by

xn = F xn-1( ) .  Let f be an observable, i.e., a continuous function from [0,1] to R.

Proposition 2.5 (a) then says that the time average lim
NÆ •

1
N

f(Fk (x0))
k= 0

N-1

Â  of f is equal to the

“phase space average” f (x) n• (dx)Ú  of f for any initial state x0 which is not eventually
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periodic.  The identification of time averages with phase space averages is the theoretical

foundation of the statistical mechanical derivation of thermodynamics.

One way to measure chaos is to calculate Liapunov exponents.  These exponents

measure the rate of separation of nearby points under iterations of the map defining a

dynamical system.  When x and x0  are close,

F n x( ) - Fn x0( ) ª Dx0
Fn ⋅ x - x0( ) .

If we also require that F n x( ) - Fn x0( ) ª exp nl x0( )( )  asymptotically  as n increases (for x

“infinitesimally close” to x), then a natural definition for l x0( )  is

l x0( ) ≡ lim
nÆ•

1
n log D x0

Fn ⋅ x - x0( )

          = lim
nÆ •

1
n log ¢ F Fn -1 x0( )( ) ⋅ ¢ F F n- 2 x0( )( ) ⋅ ⋅ ⋅ ¢ F x0( ) x - x0( )

         = lim
nÆ •

1
n log ¢ F Fk x0( )( )

k =0

n-1

Â             (15)

assuming, of course, that F is differentiable at F k x0( )  for all k ≥ 0.  In our case, F is

differentiable at all but countably many points.  For a point x in [0, 1] where F fails to be

differentiable, let us make the convention that DxF ≡ 1, the smaller in magnitude of the one-

sided derivatives.  If x0  is in I•, (15) can be calculated directly or via Proposition 2.5 (a)

with f x( ) ≡ log ¢ F x( )  so that

 l x0( ) = lim
nÆ•

1
n log ¢ F Fk x0( )( )

k=0

n-1
Â = log ¢ F x( )Ú n• dx( ) .             (16)
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In either case, l x0( ) = 0  for all x0  in I• because ¢ F (x) ≡ 1 on I•.  Similar reasoning

shows that if x is eventually in the period 2n orbit of F, i.e., 
  
x Œ F -k (Pn )

k= 0

•

U  then

                     l x( ) = 1
2 n log 7

3( ) . (17)

There is no generally accepted mathematical definition of a chaotic map.  One widely

accepted definition [9] requires that the Liapunov exponent be positive.  It follows that

F: I• Æ I•  is not chaotic in this sense.  It is not difficult to verify that F is also not chaotic

according to the definition given in Devaney [7].  The qualitative behavior that nearby points

in I• do not separate with increasing iterations of F is also manifested by  the fact,

established in Theorem 1.1 (a), that F is a permutation on the intervals In
k  for any fixed n.

A measurable partition of a probability space (X,n) is a collection

       x = B1,B2,.. ., Bn{ }

of measurable subsets of X whose union is X and which are pairwise disjoint.  The entropy

H(x) is given by

H x( ) = - n(Bi ) log
i=1

n

Â [n(Bi )] (18)

with the convention that 0 log0 = 0 .  If T:X Æ X is a fixed measurable transformation,

define xm  to be the measurable partition of X consisting of all sets of the form

  
Bi1

« T-1(Bi2
)«L«T-m-1(Bim

)  where Bi k
Œ x.  For a T-invariant probability measure n,

the entropy h(n, x) of n relative to x is defined by

h n, x( ) = lim
mÆ•

1
m H xm( ) , (19)
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where it can be shown that the limit in (19) exists.  The entropy h(n) is then defined by

h(n) = sup h(n, x) (20)

where the supremum is over all measurable partitions of X.  The entropy h(n) is sometimes

called the Kolmogorov-Sinai invariant and it measures the asymptotic rate of creation of

information by iterating T.  It is invariant under measure preserving isomorphisms.  If X is a

compact metric space (with the Borel s-algebra) and T is continuous, then [14]

h n( ) = lim
diam xÆ0

h n, x( ) , (21)

wherediam x = maxi diameter of Bi Œx{ } .  

We apply (21) to F: I•  Æ I• with the invariant probability measure n•.  For any
positive integer n, let x n( ) = In

1 « I•,In
2 « I•, .. ., In

2n
« I•{ }.  As n Æ • , diam x n( ) Æ 0 .

By Theorem 1.1, x n( )( )m
= x n( )  for every m and

                  H x n( )( ) = - n•(In
k « I• )log

k =1

2 n

Â [n• (In
k « I• )]

       = - 2-n log
k=1

2n

Â 2-n

       = n log2 .            (22)
Therefore h n•,x n( )( ) = lim

mÆ•
 1

m nlog 2 = 0  for all n. Thus

h n•( ) = lim
nÆ 0

h n• ,x n( )( ) = 0 .

Essentially the same argument shows that h(n•) = 0 when we regard F: [0,1] Æ [0,1].  The

only modification needed is to add terms to the partition x(n) which partition the
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complement of I• in such a way that the diameters of these zero measure pieces decrease to

zero as n Æ •.

A similar calculation shows that h(nn) = 0 for F: [0,1] Æ [0,1] for any nonnegative

integer n.  Because [0,1] is a compact metric space, the topological entropy ht f( )  for our

map F:![0,1] Æ [0,1] may be defined [4] as

ht(F) = sup {h(n) : n is an ergodic F-invariant probability measure}.

From the above analysis, the topological entropy is clearly zero.  

To what extent is the behavior of the function F generic?  Let T:[0,1] Æ [0,1] be a

continuous map with zero topological entropy, and let n be an ergodic T-invariant

probability measure on [0,1] which is not supported on any periodic orbit of T.  

Misiurewicz [2] pointed out that all periodic orbits of T have periods which are powers of 2.

He proved that the dynamical system determined by T and n on [0,1] is isomorphic to the

adding machine on 2-adic integers explained in Theorem 1.2 together with the measure

  n• o h-1  (where h is the homeomorphism defined in Theorem!1.2). It follows that  the

dynamical system determined by T and n on [0,1] is therefore isomorphic to the dynamical

system determined by F and n•.  An example of such a map with zero topological entropy

is the function x2!–!c0 discussed in the introduction.
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