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We examine in detail a physically natural and general scheme for gradually deforming a
Hamiltonian to its corresponding billiard, as a certain parametesiries from one to infinity. We

apply this limiting process to a class of Hamiltonians with homogeneous potential-energy functions
and further investigate the extent to which the limiting billiards inherit properties from the
corresponding sequences of Hamiltonians. The results are mixed. Using theorems of Yoshida for the
case of two degrees of freedom, we prove a general theorem establishing the “inheritability” of
stability properties of certain orbits. This result follows naturally from the convergence of the traces
of appropriate monodromy matrices to the billiard analog. However, in spite of the close analogy
between the concepts of integrability for Hamiltonian systems and billiards, integrability properties
of Hamiltonians in a sequence are not necessarily inherited by the limiting billiard, as we show by
example. In addition to rigorous results, we include numerical examples of certain interesting cases,
along with computer simulations. @998 American Institute of Physics.

[S1054-150098)00402-9

A billiard is a point particle which moves freely between
elastic bounces off the walls of its two-dimensional enclo-
sure. By contrast, a particle moving under the influence
of conservative forces is a Hamiltonian system. The orbits
of billiards and Hamiltonian systems have been exten-
sively studied. Natural lines of inquiry concern the stabil-
ity of periodic orbits, integrability, i.e., the existence of
constants of the motion, ergodicity, and the extent of
chaos. In this paper we show how to deform mathemati-
cally a Hamiltonian system into a billiard. We do this by
gradually weakening the forces acting on the particle
near the center of a natural enclosure defined by conser-
vation of energy and concentrating those forces near the
boundary. In the limit as forces vanish in the interior of
the enclosure, the Hamiltonian becomes a billiard. We
prove mathematical results regarding the “inheritabil-
ity” of the stability of certain periodic orbits and integra-
bility, from the Hamiltonian systems to the billiards.
Computer simulations and numerical arguments provide
additional insights. Properties of billiards may thus be
understood by studying Hamiltonian systems with suit-
able restrictions and vice versa.

I. INTRODUCTION

goes to zero. Unfortunately Birkhoff's example is unique and
cannot be used to connect Hamiltonians to billiards in gen-
eral. A method which promises to be more generally appli-
cable was used by Dahlqvist and RussbeTdey examined

the one-parameter familja sequendgeof Hamiltonians

H=3{p5+py+ (x%y*) ™). ®)
where fora=1 Eq. (1) becomes the Hamiltonian with the
quartic potentiak?y?/2, while fora=0, one obtains the hy-
perbola billiard. In the present paper we generalize the
Dahlqvist—Russberg idea, discuss it in detail, and apply it to
a class of two degree of freedom Hamiltonians with homo-
geneous potential-energy functions. In particular we investi-
gate the extent to which the limiting billiards inherit proper-
ties from the corresponding sequences of Hamiltonians. We
use some results of Yoshiti4 and prove a general theorem
establishing the “inheritability” of the stability properties of
straight-line periodic orbits.

In Sec. Il we discuss the Hamiltonian to billiard scheme
in general. In Sec. Ill we review certain results from
Floquet—Liapunov theory and introduce the monodromy ma-
trix for straight-line periodic orbits in the Hamiltonian, as
well as the billiard case. In Sec. IV we review some of
Yoshida's results on the stability of straight-line orbits and

The idea that a billiard system can be thought of as aronintegrability for homogeneous potentials of even positive
limiting case of a Hamiltonian system has been known sincénteger degre&-° In Sec. V we prove a number of results,
Birkhoff suggesteti(see also Ref.)2that one can obtain the and show that the trace of the monodromy matrix for a
elliptic billiard from the motion of a particle on the surface straight-line periodic orbit of the Hamiltonian sequence, in
of a triaxial ellipsoid when one of the ellipsoid’s semiaxesthe limit ask— o, is equal to the corresponding trace for the
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billiard. Finally, in Sec. VI, we investigate two examples and
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In the following sections we shall consider potentials

conjecture that Yoshida’s trace formula gives correct result¥/(x,y) which are homogeneous effendegreem; thus

also for nonintegek in certain cases.

Il. THE HAMILTONIAN TO BILLIARD SEQUENCE

We define the one-parameter family of Hamiltonians

V(x,y)]*
E

whereV(x,y)=0 is the potential energy arielis the energy

1
Hi=35 (pi+p))+E ——| =E, )

(we let the particle massi=1). We are assuming, through-

out the present paper, that the physical redldifi’s region).
Q={(x,y)|V(x,y)<E}, is compact, and thaE>0. How-

ever, these assumptions are not all necessary and may Y

relaxed. Wherk=1, H, becomes the Hamiltonian
H1=3(p5+py)+V=E. )

When k—, H, goes into the billiard with boundaryQ
={(x,y)[V(x,y)=E}, since

H.=3(p;+p;)=E if V<E, (4)
H.=3(p2+pl)+E=E if V=FE, (5)
H,=c% if V>E, (6)

A more formal way to view the HamiltoniaHl,, given by
Eq. (2), is to consider the Hamiltonian

V(x, y))

)+h =E, (7)

1 2,
Hk(h)=§ (Px+

which depends on a parameter-0. H (h=E) as k—o
goes into the billiard with boundaryQ={(x,y)|V(x,y)
=E}. We define the unit normal and tangent vectorg@®

by
_ gradV (=Y V)
lgrad V]’ lgrad V] *

wheren is theinward normal andt is the counterclockwise
tangent(V, = dV/dx, etc). OndQ, the normal component o
the momentunp,, and the tangential componemtare given

by

8

(prx+vypy) D :(pry_vypx)
lgradV| " |gradV]|

Equation(5) implies thatp+ p5=p5+ p7=0 on4dQ. This is

Pn=- 9

the usual situation for a Hamiltonian system, where any tra-

jectory that meets the boundary is normald@Q. However,
for a billiard this need not be so, and we may hay# 0. We
shall show below that, in the billiard limit and o/Q, p,
=+, while p;=
the boundary.
From Eq.(2), whenp+p;=0, we see thatQ is given
by V(x,y)=E and so it is independent d&f. Furthermore,
since we have assumed tHat-0, we have thaE(V/E)¥
=0; thereforep? ., andp’ ., are obtained whel'=0 as
in thek=1 case. Thus the physical range of the variaklgs

[determined byw(x,y)=E], and the physical range of the

variablesp, ,p, (determined by/=0), are independent d.

0, thus the particle is reflected properly at

V(ax,ay)=a"™V(X,y). (10
Let us rewrite Eq(7) as follows:
Hi(h)=3(p5+ps) +h' (V(x,y))*=E. (13)

It is a well-known fact* that if the potential energy is a
homogeneous function of th&Cartesiah coordinates, the
scalingx,y— ax,ay, andt— Bt [with a particular choice of
B=pB(a)], amounts to a rescaling of the energy and vice
versa. Therefore the energyis not an essential parameter of
the Hamiltonian and in particular it does not affect the inte-
grability or the stability properties of the system. It is also
e that the value of an overall constant factor of the poten-
tial energy, likeh! ¥ in Eq. (11), cannot affect the integra-
bility or the stability properties of the system, and in fact can
be eliminated from the equations of motion by the reparam-
etrizaton t=h*"%2%t  in  which case d/dt?
=—3d[V(x(t),y(1))]¥/ox, and likewise ford?y/dt?. We
shall, therefore, leE=h=1 without loss of generality. Our
Hamiltonian, Eq.(7), then becomes

Hy=3(pZ+p3) +Vi(x,y) =1,
where

Vi(x%,y) =[V(x,y)]¥
and

(12

(13

Vi(ax,ay)=a™V,(x,y). (14)
The equations of motion fdtd, are
X= Py,
y=py,
px=—kVE1V,,

(15

py=—kVK 1V, .

§ OndQ, whenk—«, Egs.(15) give

y=Ppy,

C (+% if V,#0

pﬁ{ 0 if V,=0,
+ o0

| s

Furthermore, if we evaluatp, and p;, using Eqgs.(9) and
(15), we obtain

X:pxa

(16)
if Vy#0
if Vy=0.

pn=kVK Y grad V| +[terms independent ok], 17

[VXV Vyvxxpx+ ny(prx_v

yhy)1
|gradVI|* '

yyPy~

ptz Pn

It follows from Egs.(17) that ondQ, whenV=1, andp,
:0,

lim p,=+% and p;=0, (18

K— o0
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as mentioned abové&ecall that our normal is the inward
norma). Figure 1 in Sec. VI shows the implications of Egs.

(18) graphically.

Sn+1=f(Sn,Pn)s  Pn+1=9(Sn,Pn), (24

wheres and p are the phase space coordinates for the bil-
liard; s; is the arclength, ang; = cosé, is the tangential com-
ponent of the momentum at thth bounce. The stability of a
periodic orbit, with initial point &;,pg), is determined by
In order to investigate the stability of an orbit, one ex- considering the behavior of a nearby orbit stgrtlng 8 (

. . ; .+ 0S9,Pot 6pg), Wheredsy and 5pg are small. It is easy to
amines the behavior of the solutions of the so-called variag, " by keening only linear terms in the ex ansionssyr
tional equations and the trace of the corresponding mono- e ping only P

) X 2 and 8p,, that after one bounce we have
dromy matrices. In general, to obtain the variational P1

IIl. THE MONODROMY MATRIX

equations for a reference orhx(t),y(t)), of H,, we let 5sl> B O(b‘so)

(X(t) + &x(1),y(t) + £y(1)) be a nearby orbit, wherg, andé, op1) my, 6po)’ (25
measure the separation of the two orbits. Then the variation%!/ here

equations are given by+2;V =0, (i=x,y and j

=X,Yy). By a simple rotation of the vectog{,&,) we obtain ( 511395y asllﬁpo) 28
the variational equations fogg ,&;), the normal and tangen- M0 Ipy1dsy  Ip1ldpo)

tial variations. As we shall show below the normal varia- . ) o o
tional equation for any straight-line periodic orbit of our ho- Equation(25) is the billiard analog to Eq(23). An explicit
mogeneous potential may be put in the form of Hill’s €xpression for the matrir, o was given by Berry. For the

case of a period 2 orbit in a billiardrom the point &y, pg)

equation ;
a2 to the point 6;,p;) and back m; ; becomes
n k— —
g M P 6=0, (19 [ ool ~Po1 ) -
YO Kot K= poiKoKy  poiKq—1)

where ¢, (t) is defined by(x(t),y(t))= ¥(t)(Xq,Yo), With
V(Xo,Yo) =1, and\, is called theintegrability coefficienf
We may rewrite Eq(19) as

f—
d=
—

E=A(t)E, (20
where
&n 0 1
Em:('gn)’ A<t>=< 2 0), (20

and A(t) is periodic with minimal periodl. By Floquet—
Liapunov theory, any fundamental matrix of solutiobgt)
for EqQ. (20) can be expressed as

(fn(t) é’n(t))
o=\,
&n(t)  4n(D)

where &, and ¢, are two independent solutions of Ed.9),
P(t) is a nonsingular matrix of periodic functions with the
same periodl as A(t), andB is a constant matrix whose

P(t)eBt, (22

In Eq. (27) po, is the length of the chord froms,py) to
(s1,p1), While Kg andK; are the curvatures as{,po) and
(s1.p1), respectively. One should recall here that, is the
linearized map fobne bouncewhich corresponds to half the
period of our periodic orbit. Likewise the periddappearing
in M(T), Eq.(23), is the period ofy"“ 2 which is half that
of . We see that

tr my o= poy(Ko+Kq)—2. (29)

The absolute value of i, o determines the stability of the
period 2 orbits for the billiard. Iftr m; ¢ >2, then the orbit

is unstablé A formula analogous to Eq28) was derived by
Yoshida for the trace of the monodromy matrix in Eg3).

We discuss it in the next section, as it applies to our se-
quence of Hamiltonians, and will compare it to E&8).

IV. YOSHIDA’S THEOREMS, INSTABILITY, AND
NONINTEGRABILITY

eigenvalues are called the characteristic exponents of the sys-

tem (20). Since trA(t)=0, the solutions of Eq(20) are
never asymptotically stable. The matridd(T)=e®" is
called themonodromy matrixor the system20). The trace
of M determines the stability of the system. WhignM|

Yoshida, in a series of papets proved certain theo-
rems relating to the stability of straight-line periodic orbits,
and the nonintegrability of Hamiltonian systems with homo-
geneous potentials. We collect some results of Yoshida in

>2, the system(20) is unstable and as a consequence, thehe form of the two theorems below.

periodic solution(x(t),y(t)) is also unstable.

Clearly, from Eq.(22), ®(T)=P(T)M(T), so if we
choose® (0)=1, wherel is the identity matrix, we have that
P(0)=P(T)=I, and therefor&P(T)=M(T). We may then
write

(gnm )

&n(T) '

£(0)

£,(0) @39

o

We consider a Hamiltonian system with two degrees of
freedom, and a homogeneous potentiateénpositive inte-
ger degreenk. By the assumption of the homogeneity of the
potential, Hamilton's equations have, in general, at least two
straight line periodic solutiofigsee also Sec. M The normal
variational equation of such a solution is given by EtP).
Yoshida has shown tha#,(t) hask independent periodsn
the complext plane and thus we havk monodromy matri-

Consider now the billiard whose boundary is determined byces. Under the above conditions we have the following theo-

V(x,y)=1. The billiard map is given by

rem:
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Theorem I:* The trace of any monodromy matri of . Vy(X0.Yo0) . )
the normal variational equatiaf19), is given by P(t)+ Yo (1) =0 if yo#O0. (34)
52 .
" M= cog (m/2mK) y(mk—2)?+8mK,] (299 If X0.¥0#0, it follows that

cog (mk—2)(m/2mK)] Vi(X0,Yo)  Vy(Xo,Yo)
x(X0,¥Yo y\?0:J0

The periodic solution (x(t),y(t))= #(t)(Xo.Yo), With ” = (39
#(0)=1 andd;, /dt(0)=0, is unstable iftr M|>2. 0 Yo
Yoshida also proved, for the type of system under con-1f x,=0, yo,#0, Eq. (33) implies thatV,(xq,yo)=0 and
sideration, that under certain conditions, the existence of athereforeV,(xq,yo)# 0. Similarly if xo# 0, yo=0. Thus in
exponentially unstable straight-line periodic solution impliesall cases gra®¥(xy,yo)=a(Xg,Yo) for some nonzero constant
the nonintegrability of the system, i.e., the nonexistence ofi. Now suppose) is a solution of
an additional global analytic first integral. We now summa- - ke Lres
rize some arguments of Yoshrlaased on results of Ziglit, Y1) +aky (=0, (36)
in the form of T?eorem Il below. satisfying #(0)=1, (0)=0. Using the homogeneity of,
Theorem II: > If a Hamiltonian with two degrees of free- =[V]¥ and its derivatives, it follows that
dom and a homogeneous potential of eypasitivel degree }
has a straight-line periodic solution for which the trace of the  Xgi= — Vy x(#iXo, ¥iYo) .,
monodromy matrix is greater than 2, then the Hamiltonian

(37

system is nonintegrable. Yok= — Viy(#Xo, ¥iYo),
and (x,y) = ¢ (t)(Xo,Yo) is a straight-line periodic solution
for Hy. |
V. THE GENERAL HOMOGENEOQOUS CASE From the proof of Lemma | it follows that

We consider again the class of non-negative smooth ho-  9radVy(Xo,Yo) =ak(Xo.Yo)
mogeneous potentials with even degree We assume that

the physical regioQ={(x,y)|V(x,y)<1} is compact with = M K(Xg,Yo) If Xg#0. (38
nonvanishing gradient on the boundary. It follows from ho- %o
mogeneity that the gradient is nonvanishingQnexcept at gradVy(Xo,Yo) = ak(Xo,Yo)
the origin. As before we let
12 22 _ ~ Vy(Xo.Yo) .
Hk_ E(px+py)+vk(X:Y)_1: (30) :y—o k(Xo,yo) if yoio,

SincedQ=1{(x,y)|V(x,y) =1} is compact and smooth, there
is a point, say Xp,Yo), 0ndQ closest to the origin, and this
point has(nonvanishing gradient proportional to the vector
from the origin to §q,Yo). From the homogeneity of the
same is true for the _poin%.(xo,yo) on dQ. From this it (X,Y) = () (X0,Yo), (39
follows that the straight line segment fromxg(yg) to o

— (Xo,Yo) is the trajectory of a straight-line periodic orbit for Wherey satisfies Eq(36). _
the HamiltoniarH, . The same argument shows that the far- ~ Leémma Il:The Hessian oWy, denoted He$¥,], satis-
thest point from the origin is the end point of a straight-line fies the eigenvalue equations

where V(Xg,Y0)=1 and §&q,Yo) is on the trajectory of a
straight-line periodic orbit. FoH, the straight-line periodic
solution has the form

periodic orbit. Thus there are at least two straight-line peri- Xo Xo
odic orbits for this class of Hamiltonians. Hes$Vk](y =ak(mk— 1)(y ) (40
Lemma I:If H, has a straight-line periodic orbit 0 0
and
(X,y)= 1(t)(X0,Yo), (31
with V(xo,Yo) =1, then for everk, H, has a periodic orbit Hes$Vk]( —y0> =[AV,—ak(mk— 1)]( _yo), (42)
with the same trajectory fromxg,yg) to —(Xq,Yo)- Xo Xo
Proof: From the equations of motion whereAV, is the Laplacian of,.
X=-V,, y=-V,, (32) Proof: Equgtion(40) follows frgm different.iating Egs.
) (39) and (37) with respect tot, using the chain rule, and
we get from the homogeneity &f. comparing terms. Equatio@1) follows from Eq. (40), the
Koty (1) = — ™ OV, (X0, Y0), fact that the sum of the eigenvalues of Had4g equals its
o¥a(t) Vi (OVxX0 Yo) (33) trace, and the symmetric matrix HE¥g| has an orthogonal
yoijfl(t) =— «//T’l(t)vy(xo,yo). basis of eigenvectors. |
. . Let (x(t),y(t)) and (x(t) + &(t),y(t) + &,(t)) be neigh-
We have thaij, is a solution of boring solutions for the position coordinates of the equations
. V. (Xq, of motion
y(t)+ ValXo.Yo) YUY =0 if Xg#0,

Xo X: _Vk,X ' y: _Vk,y ’ (42)
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for H,. Note that this may rewritten as E(B6). The varia-
tional equations fog,, &, are

( gy) = —Hes§Vi(x.y)] gy) . 43)
which may be written as

(5) = — 2 Hes§Vixo.yo)]| 2. (44

gy gy

Define &,=—yoé+Xoé, the normal variation, andé
=XoéxtYoé, the tangential variation. In terms gf and¢;,
Eq. (44) becomes

én) mk—2 (_yo XO)
== t Hes$V,(Xg,
(ft e (1) Xo Yo $Vi(Xo,Yo)]
(_YO Xo>_l(§n)
X )
X0 Yo gt
Since the columns of
(_YO Xo)l
Xo Yo
are eigenvectors for Hgd%.(Xq,Yo)], we may apply
Lemma Il to rewrite Eq(45) as

(49)

£n e
(ét ==y
(Avk(xo,yo)—ak(mk— 1) 0
X 0 ak(mk—1)
fn)
X(ft . (46)

This yields the normal and tangential variational equations

Ent[AVi(Xo,Y0) —ak(mk—1)]y* 2¢,=0, (47)

£+ak(mk—1) g 2g=0. (48

Equationg47) and(48) are not suitable in their present form
for Yoshida’'s trace formula. The time variable in E¢36),
(47), and(48) must first be rescaled by a factor gék. This
gives us

Yt P =0, (49)
Ent N 26,=0, (50)
£+ (mk—1) ¥ 2¢,=0, (51)

respectively, where théntegrability coefficienth, in Eq.
(50) is given by

_ AVi(Xo,Yo)
K ak

Evaluating the Laplacian in E¢52) we obtain

AV
(X0+Yo0) N
a

—(mk—1). (52)

Me=[a(x3+y3)—mlk—a(x3+y2) + 1,
(53

wherea is determined by the equation,

Collas, Klein, and Schwebler

gradV(Xg,Yo) = a(Xg,Yo)- (54)

Note that by Lemma 1), depends only ok since the tra-
jectory determined byxy,Yo) is the same for each of the
HamiltoniansH, .

Theorem lll: With the above assumptions on the poten-
tial V.

(@) the integrability coefficient\, is independent ok
and the same for all of the Hamiltoniafld,} if and only if
a(x3+y2)—m=0.

(b) If a(x3+y3)—m=0, the traces of the monodromy
matrices, for the normal variational equations corresponding
to the straight-line periodic orbit whose trajectory is the line
segment from Xp,Yo) 1o —(Xq,Yo), cOnverge, agk—x, to
the trace of the matrixn,  for the limiting billiard.

(©) If a(x3+y5)—m=0 and AV(xo,Yo)>a*(X5+Y5),
then the straight-line periodic orbit whose trajectory is the
line segment fromX,,yo) to —(Xg,Yo) IS an unstable orbit
for H,, andH, is nonintegrable for allfinite) sufficiently
largek. This orbit is also unstable for the limiting billiard.

(d) If a(x3+y3)—m>0, then the straight-line periodic
orbit whose trajectory is the line segment froxy {yo) to
—(Xp,Yo) is an unstable orbit foH, for all (finite) suffi-
ciently largek.

Proof: Part(a) follows immediately from Eq(53). For
part (b), observe that by Eq53), if a(x3+y3) —m=0, then
M=\ is independent ok. By direct calculation of the limit
of Eq. (29) we obtain

lim |tr M|=2(2\—1).

K— o0

(55

It now remains to prove that the trace of the matmx o
equals 2(2—-1).
From the expression for the curvatung€, of V(X,y)
=1
ViVo =2V, V,Vy+Vy V7
- (Ve+Vy)¥2 ’

(56)

and the fact thaV is homogeneous of even degree, it follows
that the curvatureKy(Xq,Yo) andK(—Xq,—Yo) appearing
in Eq. (28) for tr my o are equal. Thus we have

tr my o=2(po:K—1), (57

whereK=K(Xg,Yo), andpg;= 2\/x02+ yoz. Assuming for the
moment that both,, yo#0, we have from Eq(40) with k
=1, that
2 _ 2
VxxX0+nyX0y0_ a(m_ 1)X0- (58)
Vyyyg+ nyX0y0: a(m-— 1)yg'

Using Eqs(54) and(58) in Eq. (56) and then substituting the
result in Eq.(57) we obtain

trmp=2(2\—1). (59

If, say, Xo#0 butyy=0, then we must hav¥,(Xq,Yq) #0
andVy(Xq,Yo) =0, and we obtain again E¢9); likewise if
yo#0 andxy,=0. Part(c) follows from the fact that\ >1
and that fork sufficiently large|tr M|>2 by Eqg.(55). We
then use Theorem Il and the comments following E2B).
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Part (d) follows from Eq. (55), the arguments for parc),
and the fact thak diverges to infinity. |

Remark:lt is easy to show by direct calculation that for
straight-line periodic orbits along theandy axes of a poly-
nomial potential V=Ayx"+A;x" ly+---+ A y™, m even
integer,a(x3+y3) —m=0, and thus\, is independent ok.
The same is true foall straight-line periodic solutions of
potentials of the fornx™+y™, m even integer.

VI. THE ELLIPTIC CASE

As an example we now consider the potential energy
RS2S%

5

which is homogeneous of degree=2 and thus satisfies the

conditions in Theorem lll. The Hamiltonians in our sequence
are

A>1, (60)

Hi=3(p5+pd) +Vi(x,y) =1, (62)
with
5 K FIG. 1. The orbit withk=1 initial conditionsx=1.2, y=0, p,=—0.2,
X“+Ay> p,=0.721..., ofH,, Eq.(66), with \=2.
k= 2 ’ (62)

whereV, satisfiesV,(ax,ay)=a?*V,(x,y). The Hamilto- o - o _
nians in the above sequence have two straight-line periodief Hamiltonian systems. The long straight-line periodic orbit

solutions, of the elliptic billiard is indeed unstable® although the el-
liptic billiard is integrable.
y=py=0 (63) Liouville integrability in ann degree of freedom Hamil-
and tonian requires the existence mfingle-valued, independent
integrals of the motion in involution, which completely de-
X=px=0. (64 termine all the invariant tor{Lagrangian submanifolgisn

We shall refer to the solutions of Eq&3) and (64) as the t_he 2n-dimensional phase space. L_ikewi_se an integrable bil-
long and short straight-line periodic solutions, respectively. liard possesses a conserved quantity which determines all the

For the long straight-line periodic solutiog,=v2, y,=0, invariant curves in the billiard global sectibnn the case of
and so from Eqgs(54) and (53) we find thata=1 andx, the elliptic billiard a discussion of integrability in terms of a
=\, Hamiltonian formulation and action-angle variables was

By Theorem Il (b) we have that lipp__[tr M|=2(2\ given by Kozlov and Treshche this approach works only
- for the special cases where the billiard can be written as a

Hamiltonian with separable coordinates which is very rare.
In our case, the Hamiltonian sequence is nonintegrable for

—1)=tr my,. Sincex>1, it follows by Theorem lli(c) that
for all k sufficiently large the long straight-line periodic orbit
is unstable, andi, , Eq. (61), is not integrable.

For the short straight-line periodic orbit we have that
Xo=0, Yo= 2\, a=\, thush,=1/\, and

12K) (k= 1)2+ (4KIN)
|cog (m/2k) (k= 1)2+ (4k/N) ]| 5

cog (k—1)(m/2k)] ' 0.8

In this case we find that ligy.|tr M|=2|2/\—1]
=|tr myo. Clearly, 22/\—1|<2, for A>1, and one can
easily show that in this cadér M| <2 for all k=1, which
suggests that the short straight-line periodic orbit is always 0.4
stable. Hence one would expect that none of the Hamilto-
nians in our sequence is ergodic, which is consistent with the 0.2t
nonergodicity of the limiting billiard.

From the above considerations we see that the instability
of the long straight-line periodic orbit and the stability of the ~ © 2 4 6 8 10

short straight-line periodic orbit are properties that are inherg g, 2. piot of the two cosine functions of E@7) (long straight-line orbit
ited by the elliptic billiard from the approximating sequence versusk for A =53/x.

[tr M|=2

[
N
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FIG. 3. () x=0 Poincaresection(y, p, axes for the elliptic potential, Eq.
(62), with A=53/7 andk=7.43.(b) Zoom of the central region where the
y=p,=0 long straight-line orbit is unstable.

FIG. 4. (a) x=0 Poincaresection(y, p, axe$ for the elliptic potential, Eq.
(62), with A=53/7 andk=7.44.(b) Zoom of the central region where the
y=p,=0 long straight-line orbit is now stable.

k>k,, while atk= the elliptic billiard is integrable. Thus The expression for the trace of the monodromy matrix
in general, nonintegrability is not an inherited property in theEd- (29 was derived by Yoshida for the case where the
Hamiltonian sequence. homogeneity parametéris an integer, however, our numeri-

We show in Fig. 1 how a typical trajectory changes ascal analysis py means of Poincasections strongly suggests
we increase the parameterin the elliptic Hamiltonian se- that EQ.(29) is valid for all k at least for certain potentials

quence V(x,y) which are homogeneous of even positive integer de-
gree. In the case of the long straight-line periodic orbit for
X2+ \y?\ K the elliptic Hamiltonian\ =\, and Eq.(29) becomes
Hy= 3(p%+ p>2’)+(T) =1 (66) .
|cog (7/2k)\/(k—1)%+4k\]|

tr M|=2 (67)
We define the following mapping for identifying orbits for | | cog (k=1)(m/2k)]
different values ok: An orbit whose initial conditions, for We present a typical set of Poincasections. We let\
k=1, are &;1,Y1,Px1.Py1), becomes, fork>1, the orbit =53/mr=16.87.... Figure 2 is a plot of the functions
(X1,Y1,Pxk.Pyk), Where py=bypy; and py=bypys, and  |cog(m/2k) J(k—1)Z+4k\]| and cof(k—1)(/2k)] appear-
where by, is chosen so that Hi(X1,Y1,Px1,Py1) ing in Eq. (67).

=H(X1,Y1,Pxk:Py) = 1. Thus we only scale the momenta, As can be seen from Fig. 2, the long straight-line peri-
by the same factor, in order to conserve the energy. In Fig. ddic orbit does the stableunstable, unstablestable transi-

we show part of the orbit which, fdt=1, has initial condi- tion several times at every point that the numerator cosine
tions x=1.2,y=0, p,=—0.2, andp,=0.721 110 255 093, intersects the monotonic denominator cosine of(&@). The

for six different values of the parametey with A = 2. values ofk at which these intersections occur can be easily
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FIG. 5. (a) x=0 Poincaresection(y, p, axes for the potential of Eq(69) FIG. 6. (a) x=0 Poincaresection(y, p, axes for the potential of Eq(69)
with k=1.71. (b) Zoom of the central region where the=p,=0 long with k=1.79. (b) Zoom of the central region where the=p,=0 long
straight-line orbit is stable. straight-line orbit is now unstable.

obtained from Eq.67). They arek={1.043 52, 1.072 54, Using Eq.(70) we find that the periodic orbit along tixeaxis
1.65587, 2.311 74, 3.14507, 7.435 21, 8.93h 2fie first  undergoes a stableunstable bifurcation at=1.75. This is
one being stable.unstable. The Poincargections and re- verified numerically in the Poincagections shown in Figs.
lated zooms in Figs. 3 and 4 show in detail the situation orb and 6.
either side of thé&k=7.435 21 transition. The behavior shown
in Figs. 3 and 4 is typical and occurs at the other valuds of v||. CONCLUDING REMARKS

As an additional example we consider the homogeneous

potential of degreen=4 Our results provide comparisons of properties of bil-

liards to “nearby” Hamiltonian systems and may therefore

V=16y*+12%y*+ x4, (68)  be viewed in loose analogy to Kolmogorov—Arnold—Moser
thus theory, which considers the inheritability of properties of a
given Hamiltonian to nearby Hamiltonians. In our case, the

Vie= (16y*+ 12¢%y2 +xHk, (69  space of Hamiltonians is restricted to those with homoge-

The potential of Eq(68) was shown to be integrabléand ~ Neous potgn_tials of the type we coqsidered, bu_t the space also
like the elliptic one, it has two straight-line periodic orbits includes billiards which may be viewed as highly singular
along thex andy axes. In this casen=4, \,=6, and the Hamiltonians. There are several avenues open to further re-

trace of the monodromy matrixi E(ng)’ for the periodic search. One could Study the behavior of Ot{mn'straight'

orbit along thex axis becomes line) periodic orbits from a sequence of Hamiltonians to a
5 limiting billiard. Hamiltonians in the “tail” of our sequences
tr M[=2 |cog (7r/4K) V(2k—1)*+ 48] (70 behave like billiards with “soft” walls and they have interest

cog (2k—1)(/4k)] in their own right. A different direction would be to investi-
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gate alternative deformations of Hamiltonians to billiards. In translations of Mathematical Monographs Vol. 89, Providence, Rhode Is-
this way one might be able to establish theorems linking the_land, 199].

: : ; 3P. Dahlqvist and G. Russberg, “Periodic orbit quantization of bound cha-
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