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We examine in detail a physically natural and general scheme for gradually deforming a
Hamiltonian to its corresponding billiard, as a certain parameterk varies from one to infinity. We
apply this limiting process to a class of Hamiltonians with homogeneous potential-energy functions
and further investigate the extent to which the limiting billiards inherit properties from the
corresponding sequences of Hamiltonians. The results are mixed. Using theorems of Yoshida for the
case of two degrees of freedom, we prove a general theorem establishing the ‘‘inheritability’’ of
stability properties of certain orbits. This result follows naturally from the convergence of the traces
of appropriate monodromy matrices to the billiard analog. However, in spite of the close analogy
between the concepts of integrability for Hamiltonian systems and billiards, integrability properties
of Hamiltonians in a sequence are not necessarily inherited by the limiting billiard, as we show by
example. In addition to rigorous results, we include numerical examples of certain interesting cases,
along with computer simulations. ©1998 American Institute of Physics.
@S1054-1500~98!00402-9#

A billiard is a point particle which moves freely between
elastic bounces off the walls of its two-dimensional enclo-
sure. By contrast, a particle moving under the influence
of conservative forces is a Hamiltonian system. The orbits
of billiards and Hamiltonian systems have been exten-
sively studied. Natural lines of inquiry concern the stabil-
ity of periodic orbits, integrability, i.e., the existence of
constants of the motion, ergodicity, and the extent of
chaos. In this paper we show how to deform mathemati-
cally a Hamiltonian system into a billiard. We do this by
gradually weakening the forces acting on the particle
near the center of a natural enclosure defined by conser-
vation of energy and concentrating those forces near the
boundary. In the limit as forces vanish in the interior of
the enclosure, the Hamiltonian becomes a billiard. We
prove mathematical results regarding the ‘‘inheritabil-
ity’’ of the stability of certain periodic orbits and integra-
bility, from the Hamiltonian systems to the billiards.
Computer simulations and numerical arguments provide
additional insights. Properties of billiards may thus be
understood by studying Hamiltonian systems with suit-
able restrictions and vice versa.

I. INTRODUCTION

The idea that a billiard system can be thought of as a
limiting case of a Hamiltonian system has been known since
Birkhoff suggested1 ~see also Ref. 2! that one can obtain the
elliptic billiard from the motion of a particle on the surface
of a triaxial ellipsoid when one of the ellipsoid’s semiaxes

goes to zero. Unfortunately Birkhoff’s example is unique and
cannot be used to connect Hamiltonians to billiards in gen-
eral. A method which promises to be more generally appli-
cable was used by Dahlqvist and Russberg.3 They examined
the one-parameter family~a sequence! of Hamiltonians

H5 1
2@px

21py
21~x2y2!1/a#. ~1!

where fora51 Eq. ~1! becomes the Hamiltonian with the
quartic potentialx2y2/2, while for a50, one obtains the hy-
perbola billiard. In the present paper we generalize the
Dahlqvist–Russberg idea, discuss it in detail, and apply it to
a class of two degree of freedom Hamiltonians with homo-
geneous potential-energy functions. In particular we investi-
gate the extent to which the limiting billiards inherit proper-
ties from the corresponding sequences of Hamiltonians. We
use some results of Yoshida4–6 and prove a general theorem
establishing the ‘‘inheritability’’ of the stability properties of
straight-line periodic orbits.

In Sec. II we discuss the Hamiltonian to billiard scheme
in general. In Sec. III we review certain results from
Floquet–Liapunov theory and introduce the monodromy ma-
trix for straight-line periodic orbits in the Hamiltonian, as
well as the billiard case. In Sec. IV we review some of
Yoshida’s results on the stability of straight-line orbits and
nonintegrability for homogeneous potentials of even positive
integer degree.4–6 In Sec. V we prove a number of results,
and show that the trace of the monodromy matrix for a
straight-line periodic orbit of the Hamiltonian sequence, in
the limit ask→`, is equal to the corresponding trace for the
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billiard. Finally, in Sec. VI, we investigate two examples and
conjecture that Yoshida’s trace formula gives correct results
also for nonintegerk in certain cases.

II. THE HAMILTONIAN TO BILLIARD SEQUENCE

We define the one-parameter family of Hamiltonians

Hk5
1

2
~px

21py
2!1EFV~x,y!

E Gk

5E, ~2!

whereV(x,y)>0 is the potential energy andE is the energy
~we let the particle massm51!. We are assuming, through-
out the present paper, that the physical region~Hill’s region!.
Q5$(x,y)uV(x,y)<E%, is compact, and thatE.0. How-
ever, these assumptions are not all necessary and may be
relaxed. Whenk51, Hk becomes the Hamiltonian

H15 1
2~px

21py
2!1V5E. ~3!

When k→`, Hk goes into the billiard with boundary]Q
5$(x,y)uV(x,y)5E%, since

H`5 1
2~px

21py
2!5E if V,E, ~4!

H`5 1
2~px

21py
2!1E5E if V5E, ~5!

H`5` if V.E. ~6!

A more formal way to view the HamiltonianHk , given by
Eq. ~2!, is to consider the Hamiltonian

Hk~h!5
1

2
~px

21py
2!1hS V~x,y!

h D k

5E, ~7!

which depends on a parameterh.0. Hk(h5E) as k→`
goes into the billiard with boundary]Q5$(x,y)uV(x,y)
5E%. We define the unit normal and tangent vectors to]Q
by

n52
gradV

igradVi , t5
~2Vy ,Vx!

igradVi , ~8!

wheren is the inward normal andt is thecounterclockwise
tangent~Vx5]V/]x, etc.!. On ]Q, the normal component of
the momentumpn and the tangential componentpt are given
by

pn52
~Vxpx1Vypy!

igradVi , pt5
~Vxpy2Vypx!

igradVi . ~9!

Equation~5! implies thatpx
21py

25pn
21pt

250 on]Q. This is
the usual situation for a Hamiltonian system, where any tra-
jectory that meets the boundary is normal to]Q. However,
for a billiard this need not be so, and we may haveptÞ0. We
shall show below that, in the billiard limit and on]Q, ṗn

51`, while ṗt50, thus the particle is reflected properly at
the boundary.

From Eq.~2!, whenpx
21py

250, we see that]Q is given
by V(x,y)5E and so it is independent ofk. Furthermore,
since we have assumed thatE.0, we have thatE(V/E)k

>0; therefore,px max
2 andpy max

2 are obtained whenV50 as
in thek51 case. Thus the physical range of the variablesx,y
@determined byV(x,y)5E#, and the physical range of the
variablespx ,py ~determined byV50!, are independent ofk.

In the following sections we shall consider potentials
V(x,y) which are homogeneous ofevendegreem; thus

V~ax,ay!5amV~x,y!. ~10!

Let us rewrite Eq.~7! as follows:

Hk~h!5 1
2~px

21py
2!1h12k

„V~x,y!…k5E. ~11!

It is a well-known fact7,4 that if the potential energy is a
homogeneous function of the~Cartesian! coordinates, the
scalingx,y→ax,ay, andt→bt @with a particular choice of
b5b(a)#, amounts to a rescaling of the energy and vice
versa. Therefore the energyE is not an essential parameter of
the Hamiltonian and in particular it does not affect the inte-
grability or the stability properties of the system. It is also
true that the value of an overall constant factor of the poten-
tial energy, likeh12k in Eq. ~11!, cannot affect the integra-
bility or the stability properties of the system, and in fact can
be eliminated from the equations of motion by the reparam-
etrization t̄5h(12k)/2t, in which case d2x/dt̄2

52]@V„x( t̄),y( t̄)…#k/]x, and likewise for d2y/dt̄2. We
shall, therefore, letE5h51 without loss of generality. Our
Hamiltonian, Eq.~7!, then becomes

Hk5 1
2~px

21py
2!1Vk~x,y!51, ~12!

where

Vk~x,y!5@V~x,y!#k ~13!

and

Vk~ax,ay!5amkVk~x,y!. ~14!

The equations of motion forHk are

ẋ5px ,

ẏ5py ,
~15!

ṗx52kVk21Vx ,

ṗy52kVk21Vy .

On ]Q, whenk→`, Eqs.~15! give

ẋ5px , ẏ5py ,

ṗx→H 6` if VxÞ0

0 if Vx50 ,
~16!

ṗy→H 6` if VyÞ0

0 if Vy50 .

Furthermore, if we evaluateṗn and ṗt , using Eqs.~9! and
~15!, we obtain

ṗn5kVk21igradVi1@ terms independent ofk#,
~17!

ṗt5pn

@VxVyypy2VyVxxpx1Vxy~Vxpx2Vypy!#

igradVi2 .

It follows from Eqs. ~17! that on]Q, when V51, andpn

50,

lim
k→`

ṗn51` and ṗt50, ~18!
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as mentioned above~recall that our normal is the inward
normal!. Figure 1 in Sec. VI shows the implications of Eqs.
~18! graphically.

III. THE MONODROMY MATRIX

In order to investigate the stability of an orbit, one ex-
amines the behavior of the solutions of the so-called varia-
tional equations and the trace of the corresponding mono-
dromy matrices. In general, to obtain the variational
equations for a reference orbit„x(t),y(t)…, of Hk , we let
„x(t)1jx(t),y(t)1jy(t)… be a nearby orbit, wherejx andjy

measure the separation of the two orbits. Then the variational
equations are given byj̈ i1( jVk,i j j j50, ~i 5x,y and j
5x,y!. By a simple rotation of the vector (jx ,jy) we obtain
the variational equations for (jn ,j t), the normal and tangen-
tial variations. As we shall show below the normal varia-
tional equation for any straight-line periodic orbit of our ho-
mogeneous potential may be put in the form of Hill’s
equation

d2jn

dt2
1lkck

mk22jn50, ~19!

whereck(t) is defined by„x(t),y(t)…5ck(t)(x0 ,y0), with
V(x0 ,y0)51, andlk is called theintegrability coefficient.6

We may rewrite Eq.~19! as

dJ

dt
5A~ t !J, ~20!

where

J~ t !5S jn

j̇n
D , A~ t !5S 0 1

2lkck
mk22 0D , ~21!

and A(t) is periodic with minimal periodT. By Floquet–
Liapunov theory, any fundamental matrix of solutionsF(t)
for Eq. ~20! can be expressed as

F~ t !5S jn~ t ! zn~ t !

j̇n~ t ! żn~ t !
D 5P~ t !eBt, ~22!

wherejn andzn are two independent solutions of Eq.~19!,
P(t) is a nonsingular matrix of periodic functions with the
same periodT as A(t), and B is a constant matrix whose
eigenvalues are called the characteristic exponents of the sys-
tem ~20!. Since trA(t)50, the solutions of Eq.~20! are
never asymptotically stable. The matrix,M (T)5eBT is
called themonodromy matrixfor the system~20!. The trace
of M determines the stability of the system. Whenutr M u
.2, the system~20! is unstable and as a consequence, the
periodic solution„x(t),y(t)… is also unstable.

Clearly, from Eq. ~22!, F(T)5P(T)M (T), so if we
chooseF(0)5I , whereI is the identity matrix, we have that
P(0)5P(T)5I , and thereforeF(T)5M (T). We may then
write

S jn~T!

j̇n~T! D5M ~T!S jn~0!

j̇n~0! D . ~23!

Consider now the billiard whose boundary is determined by
V(x,y)51. The billiard map is given by

sn115 f ~sn ,pn!, pn115g~sn ,pn!, ~24!

wheres and p are the phase space coordinates for the bil-
liard; si is the arclength, andpi5cosui is the tangential com-
ponent of the momentum at thei th bounce. The stability of a
periodic orbit, with initial point (s0 ,p0), is determined by
considering the behavior of a nearby orbit starting at (s0

1ds0 ,p01dp0), whereds0 anddp0 are small. It is easy to
show, by keeping only linear terms in the expansions fords1

anddp1 , that after one bounce we have

S ds1

dp1
D5m1,0S ds0

dp0
D , ~25!

where

m1,05S ]s1 /]s0 ]s1 /]p0

]p1 /]s0 ]p1 /]p0
D . ~26!

Equation~25! is the billiard analog to Eq.~23!. An explicit
expression for the matrixm1,0 was given by Berry.8 For the
case of a period 2 orbit in a billiard@from the point (s0 ,p0)
to the point (s1 ,p1) and back# m1,0 becomes

m1,05S r01K021 2r01

K01K12r01K0K1 r01K121D . ~27!

In Eq. ~27! r01 is the length of the chord from (s0 ,p0) to
(s1 ,p1), while K0 andK1 are the curvatures at (s0 ,p0) and
(s1 ,p1), respectively. One should recall here thatm1,0 is the
linearized map forone bounce, which corresponds to half the
period of our periodic orbit. Likewise the periodT appearing
in M (T), Eq. ~23!, is the period ofck

mk22 which is half that
of ck .4 We see that

tr m1,05r01~K01K1!22. ~28!

The absolute value of trm1,0 determines the stability of the
period 2 orbits for the billiard. Ifutr m1,0u.2, then the orbit
is unstable.8 A formula analogous to Eq.~28! was derived by
Yoshida for the trace of the monodromy matrix in Eq.~23!.
We discuss it in the next section, as it applies to our se-
quence of Hamiltonians, and will compare it to Eq.~28!.

IV. YOSHIDA’S THEOREMS, INSTABILITY, AND
NONINTEGRABILITY

Yoshida, in a series of papers,4–6 proved certain theo-
rems relating to the stability of straight-line periodic orbits,
and the nonintegrability of Hamiltonian systems with homo-
geneous potentials. We collect some results of Yoshida in
the form of the two theorems below.

We consider a Hamiltonian system with two degrees of
freedom, and a homogeneous potential ofevenpositive inte-
ger degreemk. By the assumption of the homogeneity of the
potential, Hamilton’s equations have, in general, at least two
straight line periodic solutions6 ~see also Sec. V!. The normal
variational equation of such a solution is given by Eq.~19!.
Yoshida5 has shown thatck(t) hask independent periods~in
the complext plane! and thus we havek monodromy matri-
ces. Under the above conditions we have the following theo-
rem:
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Theorem I:4 The trace of any monodromy matrixM of
the normal variational equation~19!, is given by5

tr M52
cos@~p/2mk!A~mk22!218mklk#

cos@~mk22!~p/2mk!#
. ~29!

The periodic solution „x(t),y(t)…5ck(t)(x0 ,y0), with
ck(0)51 anddck /dt(0)50, is unstable ifutr M u.2.

Yoshida5 also proved, for the type of system under con-
sideration, that under certain conditions, the existence of an
exponentially unstable straight-line periodic solution implies
the nonintegrability of the system, i.e., the nonexistence of
an additional global analytic first integral. We now summa-
rize some arguments of Yoshida5 based on results of Ziglin,9

in the form of Theorem II below.
Theorem II: 5 If a Hamiltonian with two degrees of free-

dom and a homogeneous potential of even~positive! degree
has a straight-line periodic solution for which the trace of the
monodromy matrix is greater than 2, then the Hamiltonian
system is nonintegrable.

V. THE GENERAL HOMOGENEOUS CASE

We consider again the class of non-negative smooth ho-
mogeneous potentials with even degreem. We assume that
the physical regionQ5$(x,y)uV(x,y)<1% is compact with
nonvanishing gradient on the boundary. It follows from ho-
mogeneity that the gradient is nonvanishing inQ except at
the origin. As before we let

Hk5 1
2~px

21py
2!1Vk~x,y!51, ~30!

Since]Q5$(x,y)uV(x,y)51% is compact and smooth, there
is a point, say (x0 ,y0), on ]Q closest to the origin, and this
point has~nonvanishing! gradient proportional to the vector
from the origin to (x0 ,y0). From the homogeneity ofV the
same is true for the point2(x0 ,y0) on ]Q. From this it
follows that the straight line segment from (x0 ,y0) to
2(x0 ,y0) is the trajectory of a straight-line periodic orbit for
the HamiltonianH1 . The same argument shows that the far-
thest point from the origin is the end point of a straight-line
periodic orbit. Thus there are at least two straight-line peri-
odic orbits for this class of Hamiltonians.

Lemma I:If H1 has a straight-line periodic orbit

~x,y!5c1~ t !~x0 ,y0!, ~31!

with V(x0 ,y0)51, then for everyk, Hk has a periodic orbit
with the same trajectory from (x0 ,y0) to 2(x0 ,y0).

Proof: From the equations of motion

ẍ52Vx , ÿ52Vy , ~32!

we get from the homogeneity ofV.

x0c̈1~ t !52c1
m21~ t !Vx~x0 ,y0!,

~33!

y0c̈1~ t !52c1
m21~ t !Vy~x0 ,y0!.

We have thatc1 is a solution of

c̈~ t !1
Vx~x0 ,y0!

x0
cm21~ t !50 if x0Þ0,

c̈~ t !1
Vy~x0 ,y0!

y0
cm21~ t !50 if y0Þ0. ~34!

If x0 ,y0Þ0, it follows that

Vx~x0 ,y0!

x0
5

Vy~x0 ,y0!

y0
. ~35!

If x050, y0Þ0, Eq. ~33! implies that Vx(x0 ,y0)50 and
thereforeVy(x0 ,y0)Þ0. Similarly if x0Þ0, y050. Thus in
all cases gradV(x0,y0)5a(x0,y0) for some nonzero constant
a. Now supposeck is a solution of

c̈~ t !1akcmk21~ t !50, ~36!

satisfyingc(0)51, ċ(0)50. Using the homogeneity ofVk

5@V#k and its derivatives, it follows that

x0c̈k52Vk,x~ckx0 ,cky0!,
~37!

y0c̈k52Vk,y~ckx0 ,cky0!,

and (x,y)5ck(t)(x0 ,y0) is a straight-line periodic solution
for Hk . j

From the proof of Lemma I it follows that

gradVk~x0 ,y0!5ak~x0 ,y0!

[
Vx~x0 ,y0!

x0
k~x0 ,y0! if x0Þ0. ~38!

gradVk~x0 ,y0!5ak~x0 ,y0!

[
Vy~x0 ,y0!

y0
k~x0 ,y0! if y0Þ0,

where V(x0 ,y0)51 and (x0 ,y0) is on the trajectory of a
straight-line periodic orbit. ForHk the straight-line periodic
solution has the form

~x,y!5ck~ t !~x0 ,y0!, ~39!

whereck satisfies Eq.~36!.
Lemma II:The Hessian ofVk , denoted Hess@Vk#, satis-

fies the eigenvalue equations

Hess@Vk#S x0

y0
D5ak~mk21!S x0

y0
D ~40!

and

Hess@Vk#S 2y0

x0
D5@DVk2ak~mk21!#S 2y0

x0
D , ~41!

whereDVk is the Laplacian ofVk .
Proof: Equation~40! follows from differentiating Eqs.

~39! and ~37! with respect tot, using the chain rule, and
comparing terms. Equation~41! follows from Eq. ~40!, the
fact that the sum of the eigenvalues of Hess@Vk# equals its
trace, and the symmetric matrix Hess@Vk# has an orthogonal
basis of eigenvectors. j

Let „x(t),y(t)… and„x(t)1jx(t),y(t)1jy(t)… be neigh-
boring solutions for the position coordinates of the equations
of motion

ẍ52Vk,x , ÿ52Vk,y , ~42!
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for Hk . Note that this may rewritten as Eq.~36!. The varia-
tional equations forjx , jy are

S j̈x

j̈y
D 52Hess@Vk~x,y!#S jx

jy
D . ~43!

which may be written as

S j̈x

j̈y
D 52ck

mk22~ t !Hess@Vk~x0 ,y0!#S jx

jy
D . ~44!

Define jn52y0jx1x0jy the normal variation, andj t

5x0jx1y0jy the tangential variation. In terms ofjn andj t ,
Eq. ~44! becomes

S j̈n

j̈ t
D 52ck

mk22~ t !S 2y0 x0

x0 y0
DHess@Vk~x0 ,y0!#

3S 2y0 x0

x0 y0
D 21S jn

j t
D . ~45!

Since the columns of

S 2y0 x0

x0 y0
D 21

are eigenvectors for Hess@Vk(x0 ,y0)#, we may apply
Lemma II to rewrite Eq.~45! as

S j̈n

j̈ t
D 52ck

mk22~ t !

3S DVk~x0 ,y0!2ak~mk21! 0

0 ak~mk21!
D

3S jn

j t
D . ~46!

This yields the normal and tangential variational equations

j̈n1@DVk~x0 ,y0!2ak~mk21!#ck
mk22jn50, ~47!

j̈ t1ak~mk21!ck
mk22j t50. ~48!

Equations~47! and~48! are not suitable in their present form
for Yoshida’s trace formula. The time variable in Eqs.~36!,
~47!, and~48! must first be rescaled by a factor ofAak. This
gives us

c̈k1ck
mk2150, ~49!

j̈n1lkck
mk22jn50, ~50!

j̈ t1~mk21!ck
mk22j t50, ~51!

respectively, where theintegrability coefficientlk in Eq.
~50! is given by

lk5
DVk~x0 ,y0!

ak
2~mk21!. ~52!

Evaluating the Laplacian in Eq.~52! we obtain

lk5@a~x0
21y0

2!2m#k2a~x0
21y0

2!1
DV~x0 ,y0!

a
11,

~53!

wherea is determined by the equation,

gradV~x0 ,y0!5a~x0 ,y0!. ~54!

Note that by Lemma 1,lk depends only onk since the tra-
jectory determined by (x0 ,y0) is the same for each of the
HamiltoniansHk .

Theorem III: With the above assumptions on the poten-
tial V.

~a! the integrability coefficientlk is independent ofk
and the same for all of the Hamiltonians$Hk% if and only if
a(x0

21y0
2)2m50.

~b! If a(x0
21y0

2)2m50, the traces of the monodromy
matrices, for the normal variational equations corresponding
to the straight-line periodic orbit whose trajectory is the line
segment from (x0 ,y0) to 2(x0 ,y0), converge, ask→`, to
the trace of the matrixm1,0 for the limiting billiard.

~c! If a(x0
21y0

2)2m50 and DV(x0 ,y0).a2(x0
21y0

2),
then the straight-line periodic orbit whose trajectory is the
line segment from (x0 ,y0) to 2(x0 ,y0) is an unstable orbit
for Hk , and Hk is nonintegrable for all~finite! sufficiently
largek. This orbit is also unstable for the limiting billiard.

~d! If a(x0
21y0

2)2m.0, then the straight-line periodic
orbit whose trajectory is the line segment from (x0 ,y0) to
2(x0 ,y0) is an unstable orbit forHk for all ~finite! suffi-
ciently largek.

Proof: Part ~a! follows immediately from Eq.~53!. For
part ~b!, observe that by Eq.~53!, if a(x0

21y0
2)2m50, then

lk5l is independent ofk. By direct calculation of the limit
of Eq. ~29! we obtain

lim
k→`

utr M u52~2l21!. ~55!

It now remains to prove that the trace of the matrixm1,0

equals 2(2l21).
From the expression for the curvature,K, of V(x,y)

51

K5
VxxVy

222VxyVxVy1VyyVx
2

~Vx
21Vy

2!3/2 , ~56!

and the fact thatV is homogeneous of even degree, it follows
that the curvaturesK0(x0 ,y0) andK1(2x0 ,2y0) appearing
in Eq. ~28! for tr m1,0 are equal. Thus we have

tr m1,052~r01K21!, ~57!

whereK5K(x0 ,y0), andr0152Ax0
21y0

2. Assuming for the
moment that bothx0 , y0Þ0, we have from Eq.~40! with k
51, that

Vxxx0
21Vxyx0y05a~m21!x0

2,
~58!

Vyyy0
21Vxyx0y05a~m21!y0

2.

Using Eqs.~54! and~58! in Eq. ~56! and then substituting the
result in Eq.~57! we obtain

tr m1,052~2l21!. ~59!

If, say, x0Þ0 but y050, then we must haveVx(x0 ,y0)Þ0
andVy(x0 ,y0)50, and we obtain again Eq.~59!; likewise if
y0Þ0 andx050. Part ~c! follows from the fact thatl.1
and that fork sufficiently largeutr M u.2 by Eq. ~55!. We
then use Theorem II and the comments following Eq.~28!.
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Part ~d! follows from Eq. ~55!, the arguments for part~c!,
and the fact thatlk diverges to infinity. j

Remark:It is easy to show by direct calculation that for
straight-line periodic orbits along thex andy axes of a poly-
nomial potential,V5A0xm1A1xm21y1¯1Amym, m even
integer,a(x0

21y0
2)2m50, and thuslk is independent ofk.

The same is true forall straight-line periodic solutions of
potentials of the formxm1ym, m even integer.

VI. THE ELLIPTIC CASE

As an example we now consider the potential energy

V5
x21ly2

2
, l.1, ~60!

which is homogeneous of degreem52 and thus satisfies the
conditions in Theorem III. The Hamiltonians in our sequence
are

Hk5 1
2~px

21py
2!1Vk~x,y!51, ~61!

with

Vk5S x21ly2

2 D k

, ~62!

where Vk satisfiesVk(ax,ay)5a2kVk(x,y). The Hamilto-
nians in the above sequence have two straight-line periodic
solutions,

y5py50 ~63!

and

x5px50. ~64!

We shall refer to the solutions of Eqs.~63! and ~64! as the
long and short straight-line periodic solutions, respectively.
For the long straight-line periodic solutionx05&, y050,
and so from Eqs.~54! and ~53! we find thata51 and lk

5l.
By Theorem III ~b! we have that lim

k→`
utr M u52(2l

21)5tr m1,0. Sincel.1, it follows by Theorem III~c! that
for all k sufficiently large the long straight-line periodic orbit
is unstable, andHk , Eq. ~61!, is not integrable.

For the short straight-line periodic orbit we have that
x050, y05A2/l, a5l, thuslk51/l, and

utr M u52
ucos@~p/2k!A~k21!21~4k/l!#u

cos@~k21!~p/2k!#
. ~65!

In this case we find that limk→`utr M u52u2/l21u
5utr m1,0u. Clearly, 2u2/l21u,2, for l.1, and one can
easily show that in this caseutr M u,2 for all k>1, which
suggests that the short straight-line periodic orbit is always
stable. Hence one would expect that none of the Hamilto-
nians in our sequence is ergodic, which is consistent with the
nonergodicity of the limiting billiard.

From the above considerations we see that the instability
of the long straight-line periodic orbit and the stability of the
short straight-line periodic orbit are properties that are inher-
ited by the elliptic billiard from the approximating sequence

of Hamiltonian systems. The long straight-line periodic orbit
of the elliptic billiard is indeed unstable.1,8 although the el-
liptic billiard is integrable.

Liouville integrability in ann degree of freedom Hamil-
tonian requires the existence ofn single-valued, independent
integrals of the motion in involution, which completely de-
termine all the invariant tori~Lagrangian submanifolds! in
the 2n-dimensional phase space. Likewise an integrable bil-
liard possesses a conserved quantity which determines all the
invariant curves in the billiard global section.8 In the case of
the elliptic billiard a discussion of integrability in terms of a
Hamiltonian formulation and action-angle variables was
given by Kozlov and Treshche¨v;2 this approach works only
for the special cases where the billiard can be written as a
Hamiltonian with separable coordinates which is very rare.
In our case, the Hamiltonian sequence is nonintegrable for

FIG. 1. The orbit withk51 initial conditions x51.2, y50, px520.2,
py50.721..., ofHk , Eq. ~66!, with l52.

FIG. 2. Plot of the two cosine functions of Eq.~67! ~long straight-line orbit!
versusk for l553/p.
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k.k0 , while atk5` the elliptic billiard is integrable. Thus
in general, nonintegrability is not an inherited property in the
Hamiltonian sequence.

We show in Fig. 1 how a typical trajectory changes as
we increase the parameterk in the elliptic Hamiltonian se-
quence

Hk5 1
2~px

21py
2!1S x21ly2

2 D k

51. ~66!

We define the following mapping for identifying orbits for
different values ofk: An orbit whose initial conditions, for
k51, are (x1 ,y1 ,px1 ,py1), becomes, fork.1, the orbit
(x1 ,y1 ,pxk ,pyk), where pxk5bkpx1 and pyk5bkpy1 , and
where bk is chosen so that H1(x1 ,y1 ,px1 ,py1)
5Hk(x1 ,y1 ,pxk ,pyk)51. Thus we only scale the momenta,
by the same factor, in order to conserve the energy. In Fig. 1
we show part of the orbit which, fork51, has initial condi-
tions x51.2, y50, px520.2, andpy50.721 110 255 093,
for six different values of the parameterk, with l52.

The expression for the trace of the monodromy matrix
Eq. ~29! was derived by Yoshida for the case where the
homogeneity parameterk is an integer, however, our numeri-
cal analysis by means of Poincare´ sections strongly suggests
that Eq.~29! is valid for all k at least for certain potentials
V(x,y) which are homogeneous of even positive integer de-
gree. In the case of the long straight-line periodic orbit for
the elliptic Hamiltonian,lk5l, and Eq.~29! becomes

utr M u52
ucos@~p/2k!A~k21!214kl#u

cos@~k21!~p/2k!#
. ~67!

We present a typical set of Poincare´ sections. We letl
553/p516.87... . Figure 2 is a plot of the functions
ucos@(p/2k)A(k21)214kl#u and cos@(k21)(p/2k)# appear-
ing in Eq. ~67!.

As can be seen from Fig. 2, the long straight-line peri-
odic orbit does the stable→unstable, unstable→stable transi-
tion several times at every point that the numerator cosine
intersects the monotonic denominator cosine of Eq.~67!. The
values ofk at which these intersections occur can be easily

FIG. 3. ~a! x50 Poincare´ section~y, py axes! for the elliptic potential, Eq.
~62!, with l553/p andk57.43. ~b! Zoom of the central region where the
y5py50 long straight-line orbit is unstable.

FIG. 4. ~a! x50 Poincare´ section~y, py axes! for the elliptic potential, Eq.
~62!, with l553/p andk57.44. ~b! Zoom of the central region where the
y5py50 long straight-line orbit is now stable.
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obtained from Eq.~67!. They arek5$1.043 52, 1.072 54,
1.655 87, 2.311 74, 3.145 07, 7.435 21, 8.935 21%, the first
one being stable→unstable. The Poincare´ sections and re-
lated zooms in Figs. 3 and 4 show in detail the situation on
either side of thek57.435 21 transition. The behavior shown
in Figs. 3 and 4 is typical and occurs at the other values ofk.

As an additional example we consider the homogeneous
potential of degreem54

V516y4112x2y21x4, ~68!

thus

Vk5~16y4112x2y21x4!k. ~69!

The potential of Eq.~68! was shown to be integrable,10 and
like the elliptic one, it has two straight-line periodic orbits
along thex and y axes. In this casem54, lk56, and the
trace of the monodromy matrix, Eq.~29!, for the periodic
orbit along thex axis becomes

utr M u52
ucos@~p/4k!A~2k21!2148k#u

cos@~2k21!~p/4k!#
. ~70!

Using Eq.~70! we find that the periodic orbit along thex axis
undergoes a stable→unstable bifurcation atk51.75. This is
verified numerically in the Poincare´ sections shown in Figs.
5 and 6.

VII. CONCLUDING REMARKS

Our results provide comparisons of properties of bil-
liards to ‘‘nearby’’ Hamiltonian systems and may therefore
be viewed in loose analogy to Kolmogorov–Arnold–Moser
theory, which considers the inheritability of properties of a
given Hamiltonian to nearby Hamiltonians. In our case, the
space of Hamiltonians is restricted to those with homoge-
neous potentials of the type we considered, but the space also
includes billiards which may be viewed as highly singular
Hamiltonians. There are several avenues open to further re-
search. One could study the behavior of other~non-straight-
line! periodic orbits from a sequence of Hamiltonians to a
limiting billiard. Hamiltonians in the ‘‘tail’’ of our sequences
behave like billiards with ‘‘soft’’ walls and they have interest
in their own right. A different direction would be to investi-

FIG. 5. ~a! x50 Poincare´ section~y, py axes! for the potential of Eq.~69!
with k51.71. ~b! Zoom of the central region where they5py50 long
straight-line orbit is stable.

FIG. 6. ~a! x50 Poincare´ section~y, py axes! for the potential of Eq.~69!
with k51.79. ~b! Zoom of the central region where they5py50 long
straight-line orbit is now unstable.
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gate alternative deformations of Hamiltonians to billiards. In
this way one might be able to establish theorems linking the
properties of nearby Hamiltonians to each other when they
are in the ‘‘tails’’ of different sequences converging to the
same billiard. The generalization of our results to Hamilto-
nians with more than two degrees of freedom along with the
limiting higher dimensional billiards is another avenue for
further research.
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