

 Excellent reference: <u>Aerosol</u> <u>Technology. Properties, behavior and</u> <u>measurement of airborne particles,</u> <u>Second Edition</u> by William C. Hinds, Wiley-Interscience, 1999

• The physical diameter and density of a particle are important factors affecting behavior of an aerosol. It is convenient to consider particles as spherical.

Particle Behavior

• Stokes diameter is the diameter of a sphere that has the same density and settling velocity as the particle.

• Aerodynamic diameter is the diameter of the unit density sphere that has the same settling velocity as the particle.

• Terminal settling velocity: can be determined if the size and density of a particle is known. Stokes' law allows an estimation of V_{ts} , for particles between 1 and 100 μ

$$V_{ts} = \frac{gd^2(\rho - \rho_a)}{18\eta}$$

- g = gravitational acceleration, 9.8 x 10² cm / sec
- d = diameter of particle in cm
- $-\rho$ = density (air = 1.17 x 10⁻³ g/cm³) m = coefficient of viscosity of air 1.828 10⁻³ g / cm as
- η = coefficient of viscosity of air 1.828 10^{-3} g / cm-sec

- This can be simplified to
 - V _{ts} = 0.003 x SG x d² at NTP.
 - This equation gives V ts in cm/sec using d in microns.

Table 1.	Cunningham for Air (298° k	Slip Correcti (, 1.0 atm)	on Factors
d _{pa} (µm)	ۍ ۲	d _{pa} (μm)	C,
0.001	221.6	0.1	2.911
0.002	111.1	02	1.890
0.003	74.25	0.3	1.574
0.004	55.83	0.4	1.424
0.005	44.78	0.5	1.337
0.006	37.41	0.6	1.280
0.007	32.15	0.7	1.240
0.008	28.20	0.8	1.210
0.009	25.14	8.0	1.186
0.01	22.60	1.0	1.168
0.02	11.85	2.0	1.084
0.03	7.978	3.0	1.058
0.04	6.151	4.0	1.042
0.05	5.080	5.0	1.034
0.06	4.337	6.0	1.028
0.07	3.823	7.0	1.024
0.08	3.441	0.0	1.021
0.09	3.145	9.0	1.019
		10.0	1.017

- Stopping distance: when a particle is released at high speed, how far will it travel?
 - This can be calculated, and is related to resistance to travel experienced by the particle. For small particles, generally this is less than 1 cm. Can be significant for denser and larger particles.

- Particle size selective samplers apply the principles in V ts to remove particles from an air stream.
 - Cyclones (centrifugal force)
 - Vertical Elutriators (settling velocity)
 - Cascade Impactor (stopping distance)
 - Horizontal Elutriators (settling velocity)

 Particle amount: how much material is present: most often mass, but can be number of particles, radioactivity, surface area, volume or chemical content. Choice of unit depends on application.

- Cumulative probability plots.
 - Calculate the fraction of total amount in each size class, and sum this fraction from the small to large size classes.
 - Graph this on 'log-probability' paper: a straight line will indicate a lognormal distribution.

Ar	nalys	is of	Parti	cle (Count
Lower Interval (µm)	Upper Interval (µm)	Midpoint Interval d _i (µm)	Number in Interval n _i	Fraction Interval (%)	Cumulative Fraction less Than d _i (%)
0.46	0.54	0.50	3770	0.74	0.74
0.54	0.63	0.585	13,000	2.56	3.30
0.66	0.74	0.685	55,100	10.84	14.14
0.74	0.86	0.80	62,900	12.38	26.52
0.86	1.0	0.93	98,800	19.44	45.96
1.0	1.2	1.1	109,000	21.45	67.41
1.2	1.4	1.3	98,800	19.44	86.85
1.4	1.6	1.5	37,200	7.32	94.17
1.6	1.8	1.7	17,000	3.35	97.52
1.8	2.2	2.0	9710	1.91	99.43
2.2	2.5	2.35	2850	0.56	99.99
2.5	2.9	2.7	52	0.01	100
			508,182		

Sample method development

- NIOSH Applet is important to review.
- Concepts:
 - Precision, bias, accuracy
 - Detection limit
 - 95 % accuracy
 - Sample stability
 - Walk through the applet