11. a) \mathbb{Q} is the set of rational numbers
 i) neither
 ii) not connected since $\mathbb{Q} = (-\infty, 0) \cup (0, \infty)$
 iii) not compact since \mathbb{Q} is not closed
 iv) $\text{lim} \text{ pt of } \mathbb{Q} = \mathbb{R}$
 v) $\text{int} (A) = \emptyset$
 vi) $\overline{A} = \mathbb{R}$
 vii) $\partial A = \mathbb{R}$

All using the corresponding definition.

12. Let $A \subseteq \mathbb{R}$ and E be the set of lim pts of A.

 WTS: E is closed. Sufficient to show that E contains all of its lim pts.
 i) If E is finite, then the proof is trivial. Enumerate the elements of E and show that every element is a boundary pt of E.
 ii) Assume E contains infinitely many lim. pts. of A.
 It is sufficient to show that E contains all of its lim pts.
 iii) Let L be a lim. pt of E. $\forall \varepsilon > 0$, $(L - \varepsilon, L + \varepsilon)$ contains infinitely many elements of E.
 \[\exists x \]
 iv) But each element of E is a lim. pt of A. Hence, $\forall \varepsilon > 0$, the are infinitely many elements of A in $(x - \varepsilon, x + \varepsilon)$, which implies that every ε neighborhood of L contains infinitely many pts of A. $\therefore L$ is a lim pt of $A \Rightarrow L \in E$. \[\square \]