a) Define,
\[T_i := \text{i-th transaction, } i = 1, \ldots, 100 \]
\[T_i' := \text{i-th transaction after rounding} \]
\[E_i := T_i - T_i' = \text{error of the i-th transaction} \]
By the given \(E_i \)'s are iid w/ uniform dist.

\[R(E_i) = \{-50, \ldots, 49\} \], where units are in cents.

\[P(E_i = k) = \frac{1}{100}, \text{ } k \in R(E_i) \]

\[\mu(E_i) = \sum_{k=-50}^{49} \frac{k}{100} = \frac{-50}{100} = -0.5 \]

\[\sigma^2(E_i) = \sum_{k=-50}^{49} (k - \mu(E_i))^2 P(E_i = k) = 25 + (\frac{49}{100}) (49)(50)(99) = 833.25 \]

\[\text{Var}(E_i) = 833.25 \]

Next define, \(S := E_1 + \ldots + E_{100} = \text{cumulative error} \). We need \(P(S > 500) \)

\[R(S) = \{-5000, \ldots, 4900, \ldots, 4900\} \], where units are in cents.

\[\mu(S) = 100 \mu(E_i) = -50 \]

\[\sigma^2(S) = 10 \sigma^2(E_i) = 288.661 \]

By the Central Limit Theorem, the dist of \(S \approx \mathcal{N}(-50, 288.661) \)

\[P(S > 500) = P(Y > 500.5) + P(Y < -500.5) \]

Approximating with \(\Phi \):
\[(1 - \Phi(1.91)) + \Phi(-1.56) \]

\[= (1 - 0.9719) + 0.0668 = 0.0051 \]

b) \[P(E_i = 0) = \frac{1}{9} \]
\[P(E_i = k) = \frac{1}{99}, \text{ } k = \{-50, \ldots, 49\}, \text{ } k \neq 0 \]

\[\mu(E_i) = \sum_{k=-50}^{49} \frac{k}{99} \cdot P(E_i = k) = \]

\[\sigma^2(E_i) = \sum_{k=-50}^{49} (k - \mu(E_i))^2 P(E_i = k) = 25 + (\frac{49}{99}) (49)(50)(99) = 631.29591368 \]

\[\text{Var}(E_i) = 631.29591368 \]

\[\sigma(E_i) = 25.12560275 \]

\[E(S) = 100 \mu(E_i) = -37.87878788 \]

\[\sigma(S) = 10 \sigma(E_i) = 251.2560275 \]

\[z_1 = \frac{500.5 - (-37.87878788)}{251.2560275} = 2.14 \]

\[z_2 = \frac{-500.5 - (-37.87878788)}{251.2560275} = -1.84 \]

\[P(S > 500) \approx P(Y > 500.5) + P(Y < -500.5) \]

\[= 1 - \Phi(2.14) + \Phi(-1.84) \]

\[= 1 - 0.9838 + 0.0329 \]