Functional Design

Week 9
Agenda (Lecture)

- Functional design
Agenda (Lab)

- Weekly progress report
- Homework/Lab assignments
Announcement

• Walk-through all lab assignment documents (1–9) for your group project
 – 3/28
 – Prepare the latest documents
Team Lab Assignment #8

• Submit the first version of the functional design document for your group project
 – Make slides for presentation

• Due date
 – The beginning of the 3/28 lab session
Team Lab Assignment #9

• Submit an implementation plan document for your group project
 – Make slides for presentation

• Due date
 – The beginning of the 3/28 lab session
WebE Process Activities & Actions
Chapter 11 *Functional Design*

- Users of modern WebApps expect that robust content will be coupled with sophisticated functionality.

- This functionality will allow them to magnify their understanding of content, characterize content in different ways, personalize their interaction, and provide added value to their website visit.

- Functional design of WebApps is almost always component based and compartmentalized.

- The designer must consider the substantial constraints imposed by the Web infrastructure—such as a distributed model (which complicates aspects like information handling and user responsiveness), security issues, and the limited interface model inherent in Web browsers.
Functionality Categories

• Group 1: User-Level (External) Functionality. These categories include functionality that directly affects users’ experience of the WebApp
 – Category 1A: User Interaction Support (e.g. highlighting a link on mouse-over)
 – Category 1B: User Information Support (e.g. presentation of live sensor readings)
 – Category 1C: User Task Support (e.g. dynamic checking and feedback on user-provided information)

• Group 2: Application-Level (Internal) Functionality. These categories relate to functionality that is necessary to support the WebApp, but which will only be visible to users as a second-order effect.
 – Category 2A: Application Interaction Support (e.g. logging of user navigation behaviours)
 – Category 2B: Application Information Support (e.g. database content maintenance)
 – Category 2C: Application Task Support (e.g. payment system)
Functionality Examples

• Client-side interaction support
 – Drop-down menus

• Client-side information management
 – Image zooming and scrolling

• Server-side content handling
 – Live score updates

• Server-side management of large data sets
 – Searching a product

• Process and/or work flow support
 – A workflow
Functional Design

• Functional design is not a discrete task that is performed at just one point in the design process. Rather, it is interwoven with other design activities.
 – *User-level functionality* is the expression of the WebApp capabilities that support users in achieving their goals.
 – *Application-level functionality* represents a lower-level design of internal functionality that may not be directly visible to users.

• Application-level functionality is more deeply embedded within the structure of the WebApp and will often emerge out of the progressive design of the user-level functionality.
Functionality Levels and Design Tasks
Functional Design: Overview
Getting Started

SafeHomeAssured.com has an interesting mix of information-focused and functionally focused components. In the initial communication activity (Chapter 4), we identified an initial set of informational and applicative goals for SafeHomeAssured.com reproduced in part here:

- To provide users with requested product specs.
- To provide tools that will enable users to represent the layout of a “space” (i.e., house, office/retail space) that is to be protected.
- To make customized recommendations about security and monitoring products that can be used within the user space.
- To enable users to obtain a quote for product cost.
- To allow users to place an order for security hardware.
- To allow users to control monitoring equipment (e.g., cameras, microphones) with their space.
- To enable users to “sign up” for monitoring services.
- To allow monitoring customers to query the monitoring database about their account activity.
Rough Functional Outline

• These goals were then refined into the following list of functions to be performed:
 • Provide product quotation.
 • Process security system order.
 • Process user data.
 • Create user profile.
 • Draw user space layout.
 • Recommend security system for layout.
 • Process monitoring order.
 • Get and display account info.
 • Get and display monitoring info.
 • Customer service functions (to be defined later).
 • Tech support functions (to be defined later).

• Ultimately these functions are elaborated into a set of use cases that capture the key user information and functional interactions.
Functional Architecture

- A representation of the functional domain of the WebApp.
- Answers two key questions:
 - How do we partition the functionality into components that have clearly defined roles and interfaces?
 - Where does each functional component exist, and what does it interact with?
- Decomposes the WebApp into constituent functional components.
An Example

Preliminary functional architecture for Increment 2 of SafeHomeAssured.com
Developing the Architecture

- Consider both the WebApp analysis model (along with any specifications that accompany it) and the initial information architecture.

- Decompose use cases into the following generic component categories:
 - *Information selection* (i.e., functionality associated with the identification and/or selection of information to be presented to the user).
 - *Information compilation* (i.e., functionality associated with merging information together into a composite to be presented to the user).
 - *Information processing* (i.e., the analysis or calculation of data).
 - *System interaction* (i.e., functionality associated with interactions with other systems external to the WebApp).

- Consider whether the specific scenario component should be invoked dynamically on user request, dynamically on event initiation, or manually.
Architectural Patterns—MVC
Detailed Functional Design

• Detailed functional modeling for WebApps is usually only carried out for those components that are extremely complex or extremely critical

• WAE establishes a set of extensions to UML that facilitate the modeling of WebApp low-level design
 – Particularly useful for connecting the information architecture to the functional components which generate the information views

• WebML has been adapted to model workflow-oriented applications.
WebML
State Modeling

• State modeling is necessary when:
 – You must accommodate interacting processes, particularly with multiple simultaneous users (or at least multiple users whose interactions with the Web servers are interleaved).
 – You must ensure that the state of the underlying information is correctly preserved when we have complex interacting processes.

• A state is an externally observable mode of behavior.
 – External stimuli cause transitions between states.
 – A state model represents the behavior of a WebApp by depicting its states and the events that cause the WebApp to change state.
 – A state model indicates what actions (e.g., process activation) are taken as a consequence of a particular event.
 – State models are created using state diagrams
State Model