Chapter 9

DESIGNING WEB APPLICATIONS WITH
WEBML AND WEBRATIO

Marco Brambilla, Sara Comai, Piero Fraternali, Maristella Matera
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Pizza L. da Vinci 32,
20133, Milan, Italy

9.1 INTRODUCTION

The Web Modeling Language (WebML) is a third-generation Web design
methodology, conceived in 1998 in the wake of the early hypermedia models
and the pioneering works on hypermedia and Web design, like HDM
(Garzotto et al., 1993) and RMM (Isakowitz et al., 1995). The original goal
of WebML was to support the design and implementation of so-called data-
intensive Web applications (Ceri et al., 2002), defined as Web sites for
accessing and maintaining large amounts of structured data, typically stored
as records in a database management system, like online trading and e-
commerce applications, institutional Web sites of private and public
organizations, digital libraries, corporate portals, and community sites.

To achieve this goal, WebML reused existing conceptual data models
and proposed an original notation for expressing the navigation and
composition features of hypertext interfaces. WebML’s hypertext model
took an approach quite different from previous proposals: Instead of offering
a high number of primitives for representing all the possible ways to
organize a hypertext interface that may occur in data-intensive Web
applications, the focus was on inventing a minimal number of concepts,
which could be composed in well-defined ways to obtain an arbitrary
number of application configurations.

222 M. Brambilla et al.

This initial design choice deeply influenced the definition of the language
and its evolution toward more complex classes of applications. Four major
versions of WebML characterize the progression of the language:

e WebML 1: The original version comprised only a fixed set of primitives
for representing read-only data-intensive Web sites; the focus was on the
modular organization of the interface, navigation definition, and content
extraction and publication in the interface.

e WebML 2: It added support for representing business actions (called
operations) triggered by the navigation of the user; in this way, the
expressive power was extended to support features like content
management, authentication, and authorization.

e WebML 3: The introduction of the concept of model plug-ins
transformed WebML into an open language, extensible by designers with
their own conceptual-level primitives, as to widen the expressive power
to cover the requirements of new application domains. This transition
emphasized the role of component-based modeling and was the base of
all subsequent extensions.

e WebML 4: The notion of a model plug-in was exploited to add
orthogonal extensions to the core of WebML, covering sectors and
applications not previously associated with model-driven development.
For example, Web service interaction and workflow modeling primitives
were added as plug-in components, to enable the modeling and
implementation of distributed applications for multi-actor workflow
enactment (Manolescu et al., 2005; Brambilla et al.,, 2006); other
extensions pointed in the direction of multichannel and context-aware
Web applications (Ceri et al., 2007).

A distinctive trait of the WebML experience is the presence of an
industrial line of development running in parallel to the academic research.
One of the original design principles of WebML was implementability,
with the ultimate goal of bringing model-driven development (MDD) to
the community of “real” developers. To achieve this objective, Politecnico
di Milano spun off a company (called Web Models) in 2001, with the
mission of implementing and commercializing methods and tools for
model-driven development of Web applications, based on WebML. Even
before then, WebML had been used for modeling and automatically
implementing an industrial project, the Acer-Euro system (http://www.
acer-euro.com), comprising the multilingual B2B and B2E content
publishing and management applications of Acer, the number 4 PC vendor
in the world.

9. Designing Web Applications with WebML and WebRatio 223

The major result of the industrial R&D is WebRatio (WebModels, 2006),
an integrated development environment supporting the modeling of
applications with WebML and their implementation with model-driven code
generators. Today WebRatio is a consolidated industrial reality: More than
100 applications have been developed by WebModels’ customers, over
4,000 trial copies are downloaded per year, and many universities and
institutions worldwide use the tool in their Web Engineering courses. In
retrospect, the most fruitful and challenging aspect of the interplay of
academic and industrial activity has been the continuous relationship
between researchers and “real-world,” “traditional” developers, which
produced essential feedback on the definition of a truly usable and effective
model-driven development methodology, which is (hopefully) reflected in
the current status of WebML and its accompanying tools.

In this chapter we will overview the core features of WebML and some
of its extensions and briefly comment on the usage experience. The chapter
is organized as follows: Section 9.2 presents an overview of the WebML
methodology and, in particular, introduces the WebML notations for the
definition of conceptual schemas. Section 9.3 describes the implementation
of the methodology and the architecture of the development tool supporting
it. Section 9.4 presents extensions of WebML for supporting Web service
composition and publication, workflow-driven Web applications, and
context-aware Web applications. Section 9.5 shortly summarizes some of the
lessons learned in the application of model-driven development with
WebML in industrial projects. Finally, Section 9.6 presents the ongoing and
future work and draws the conclusions.

9.2 THE WEBML METHODOLOGY

WebML is a visual language for specifying the content structure of a Web
application and the organization and presentation of such content in a
hypertext (Ceri et al., 2000, 2002).

224 M. Brambilla et al.

Business Requirements

l | Conceptual Modeling |

ypertext Design

-

Testing &
Evaluation

Requirements
Analysis

Implementation

Deployment
aintenance and
Evolution

Figure 9.1. Phases in the WebML development process.

As reported in Figure 9.1, the WebML approach to the development of
Web applications consists of different phases. Inspired by Boehm’s spiral
model (Boehm, 1988) and in line with modern methods for Web and
software applications development (Beck, 1999; Booch et al., 1999;
Conallen, 2000), the WebML process is applied in an iterative and
incremental manner in which the various phases are repeated and refined
until results meet the application requirements. The product life cycle
therefore undergoes several cycles, each producing a prototype or a partial
version of the application. At each iteration, the current version of the
application is tested and evaluated and then extended or modified to cope
with the previously collected requirements as well as the newly emerged
requirements. Such an iterative and incremental life cycle appears
particularly appropriate for the Web context, where applications must be
deployed quickly (in “Internet time”) and requirements are likely to change
during development.

Out of the entire process illustrated in Figure 9.1, the “upper” phases of
analysis and conceptual modeling are those most influenced by the adoption
of a conceptual model. The rest of this section will introduce the WebML
notations for the definition of conceptual schemas. It will then illustrate the
different activities in the WebML development process, with special
emphasis on conceptual modeling activities. Some issues about
implementation through automatic code generation will be discussed in
Section 9.3, by showing how conceptual schemas defined during the
design phases can be translated into a running application using WebRatio.

9. Designing Web Applications with WebML and WebRatio 225

9.2.1 Requirements Analysis

Requirements analysis focuses on collecting information about the
application domain and the expected functions and on specifying them
through easy-to-understand descriptions. The input to this activity is the set
of business requirements that motivate the application development. The
main results of this phase are

o the identification of the groups of users addressed by the application.
Each group represents users having the same characteristics or playing
the same role within a business process, i.e., performing the same
activities with the same access rights over the same objects. The same
individual user may play different roles, thus belonging to different
groups.

e the specification of functional requirements that address the functions
to be provided to users. For each group of users, the relevant activities to
be performed are identified and specified.

e the identification of core information objects, i.c., the main information
assets to be accessed, exchanged, and/or manipulated by users.

e the decomposition of the Web application into site views, i.c., different
hypertexts designed to meet a well-defined set of functional and user
requirements. Each user group will be provided with at least one site
view supporting the functions identified for the group.

Analysts are expected to use their favorite format for requirements
specification; for instance, tabular formats can be used for capturing the
informal requirements such as group or site view descriptions; UML use
case diagrams and activity diagrams can also be used as standard
representations of usage scenarios and activity synchronization. In particular,
functional requirements might be captured by activity flow, showing
sequence, and parallelism and synchronization among the activities to be
performed by different user groups.

9.2.2 Conceptual Modeling

Conceptual modeling consists of defining conceptual schemas, which
express the organization of the application at a high level of abstraction,
independently from implementation details. According to the WebML
approach, conceptual modeling consists of data design and hypertext
design.

226 M. Brambilla et al.

Data design corresponds to organizing core information objects
previously identified during requirements analysis into a comprehensive and
coherent data schema, possibly enriched through derived objects.

Hypertext design then produces site view schemas on top of the data
schema previously defined. Site views express the composition of the
content and services within hypertext pages, as well as the navigation and
the interconnection of components. For applications where different user
groups perform multiple activities, or for multichannel applications, in which
users can adopt different access devices, hypertext design requires the
definition of multiple site views, addressing the user groups involved and
their access requirements.

The models provided by the WebML language for data and hypertext
design are briefly described in the following. A broader illustration of the
language and its formal definition can be found in Ceri et al. (2000, 2002)
and at http://www.webml.org.

9.2.2.1 WebML Data Model

Data design is one of the most traditional and consolidated disciplines of
information technology, for which well-established modeling languages and
guidelines exist. For this reason, WebML does not propose yet another data
modeling language; rather, it exploits the entity-relationship data model, or
the equivalent subset of UML class diagram primitives. The fundamental
elements of the WebML data model are therefore entities, defined as
containers of data elements, and relationships, defined as semantic
connections between entities. Entities have named properties, called
attributes, with an associated type. Entities can be organized in
generalization hierarchies and relationships can be restricted by means of
cardinality constraints.

In the design of Web applications it is often required to calculate the
value of some attributes or relationships of an entity from the value of some
other elements of the schema. Attributes and relationships so obtained are
called derived. Derived attributes and relationships can be denoted by adding
a slash character (/) in front of their name, and their computation rule can be
specified as a logical expression added to the declaration of the attribute or
relationship, as is customary in UML class diagrams (Booch et al., 1999).
Derivation expressions can be written using declarative languages like OQL
or OCL.

9. Designing Web Applications with WebML and WebRatio 227

Movie UserComment RegisteredUser
(o]n]
‘cr)||t||:33 ON 11 8c|n|:r)nment 0:N 0:N | UserName
Year Rate Password
Month Title EMail
Description Comment_Date
Official_site 0:N
/NumOfComments

Actor

oD
FirstName
LastName
BirthPlace
BirthDate
Photo

Derived attribute:
/NumOfComments {Count(Movie.MovieToUserComment}

Figure 9.2. A fragment of data schema of the Movie database Web application.

Figure 9.2 shows a small fragment of the data schema of the Movie
database example, containing the entities Movie, UserComment,
RegisteredUser, Actor, and their relationships. The entity Movie contains
one derived attribute /NumofComments, which is computed as the value of
the expression Count (Movie.MovieToUserComment). This expression counts
the number of comments associated with a movie according to the
MovieToUserComment relationship role between the entities Movie and
UserComment.

9.2.2.2 WebML Hypertext Model

The hypertext model enables the definition of the front-end interface, which
is shown to a user in the browser. It enables the definition of pages and their
internal organization in terms of components (called content unmits) for
displaying content. It also supports the definition of links between pages and
content units that support information location and browsing. Components
can also specify operations, such as content management or user’s
login/logout procedures. These are called operation units.

The modular structure of an application front end is defined in terms of
site views, areas, pages, and content units. A sife view is a particular
hypertext, designed to address a specific set of requirements. It consists of
areas, which are the main sections of the hypertext, and comprises
recursively other subareas or pages. Pages are the actual containers of
information delivered to the user.

Several site views can be defined on top of the same data schema, for
serving the needs of different user communities or for arranging content as
requested by different access devices like PDAs, smart phones, and similar
appliances.

228

site

M. Brambilla et al.
MOVIE DB
HomePage Movies Area
RecentMoviesList SearchMovies
ShoppingCart Area IE]

ShoppingCart Data
InsertComment

o]

Figure 9.3. Example of site view modularization based on areas and pages.

Figure 9.3 gives an example of the organization of pages and areas in a
view, considering a fragment of the Movie database Web application.

The site view is composed of a home page, which is the first page accessed
when the user enters the application. The site view also comprises two areas:

the

Shopping Cart area, including only one page through which the user

manages his current shopping cart; and the Movies area, including three
pages that show the list of recent movies, support the search of movies, and
allow the user to enter comments.

Pages and areas are characterized by some relevance properties, which

highlight their “importance” in the Web site. In particular, pages inside an
area or site view can be of three types:

The home page (denoted with a small “h” inside the page icon) is the
page at the default address of the site view, or the one presented after the
user logs into the application; it must be unique.

The default page (denoted with a small “d” inside the page icon) is the
one presented by default when its enclosing area is accessed; it must be
unique within an area. In the example in Figure 9.3, the Shopping Cart
Data page and the Recent Movies List page are default pages for their
enclosing areas. This implies that the two pages are entry points for the
two areas.

A landmark page (denoted with a small “I” inside the page icon) is
reachable from all the other pages or areas within its enclosing module.
For example, in Figure 9.3 the home page is also a landmark page,
meaning that a link to it will be available from any other page of the site
view.

9. Designing Web Applications with WebML and WebRatio 229

Table 9.1. The Five Predefined Content Units in WebML

Data Unit Multidata Index Unit Scroller Unit Entry Unit

Unit
Data unit Multidata unit Index unit Scroller unit Entry unit
8 4D I
5 I [
Entity Entity Entity Entity
[conditions] [conditions] [conditions] [conditions]

Page composition. Pages are made of confent units, which are the
elementary pieces of information, possibly extracted from data sources,
published within pages. Table 9.1 reports the five WebML predefined
content units, representing the elementary information elements that may
appear in the hypertext pages.

Units represent one or more instances of entities of the structural schema,
typically selected by means of queries over the entity attributes or over
relationships. In particular, data units represent some of the attributes of a
given entity instance; multidata units represent some of the attributes of a set
of entity instances; index units present a list of descriptive keys of a set of
entity instances and enable the selection of one of them; scroller units enable
the browsing of an ordered set of objects. Finally, entry units do not draw
content from the elements of the data schema, but publish a form for
collecting input values from the user.

Data, multidata, index, and scroller units include a source and a selector.
The source is the name of the entity from which the unit’s content is
retrieved. The selector is a predicate, used for determining the actual objects
of the source entity that contribute to the unit’s content. The previous
collection of units is sufficient to logically represent arbitrary content on a
Web interface (Ceri et al., 2002). However, some extensions are also
available, for example, the multichoice and the hierarchical indexes reported
in Table 9.2. These are two variants of the index unit that allow one to
choose multiple objects and organize a list of index entries defined over
multiple entities hierarchically.

Link definition. Units and pages are interconnected by links, thus
forming a hypertext. Links between units are called contextual, because they
carry some information from the source unmit to the destination unit. In
contrast, links between pages are called noncontextual.

230

Table 9.2. Two Index Unit Variants

M. Brambilla et al.

Multichoice
Unit

Hierarchical
Unit

Multichoice Index
vV

[
v
v

O

Entity
[conditions]

Hierarchicallndex

ol b
1l

Entity1
[Selector1]

NEST Entity2
[Selector2]

In contextual links, the binding between the source unit and the
destination unit of the link is formally represented by link parameters,
associated with the link, and by parametric selectors, defined in the
destination unit. A /ink parameter is a value associated with a link between
units, which is transported as an effect of the link navigation, from the
source unit to the destination unit. A parametric selector is, instead, a unit
selector whose condition contains one or more parameters.

RecentMoviesList SearchMovies

RecentMovies Movie details Entry unit Scroller unit
Index) keyword
CumMovie:OID [b <| |>
|

& 5

Movie Movie] Mlovie
[Year=system. year()] [OID=CurrMovie] [Title contains keyword]
[Month=system .month ()] IE] BlockMovies :{OID} Movies
multidata
Movie

[OID in BlockMovies]

Figure 9.4. Example of contextual and noncontextual navigation.

As an example of page composition and unit linking, Figure 9.4 reports a
simple hypertext, containing two pages of the Movies Area. The page
Recent Movies List contains an index unit defined over the Movie entity,
which shows the list of movies shown in the last month, and a data unit also

9. Designing Web Applications with WebML and WebRatio 231

defined over the Movie entity, which displays the details of the movie
selected from the index. Two selectors ([Year=system.year()],
[Month=system.month ()]) are defined to restrict the selection only to the
movies of the current month and year. The arrow between the two units is a
contextual link, carrying the parameter CurrMovie, containing the object
identifier (OID) of the selected item. The data unit includes a parametric
selector ([0ID=CurrMovie]), which uses the input OID parameter to retrieve
the data of the specific movie.

OIDs of the objects displayed or chosen from the source unit are
considered the default context associated with the link. Therefore, OID
parameters over links and parametric selectors testing for OID values can be
omitted and simply inferred from the diagram.

An example of a noncontextual link is shown from the Recent Movies
List page to the Search Movies page: This link does not carry any
parameter, because the content of the destination page does not depend on
the content of the source page.

The page search Movies shows an interesting hypertext pattern; it
contains three units: an entry unit denoting a form for inserting the keyword
of the title to be searched, a scroller unit defined over the Movie entity and
having a selector for retrieving only the movies containing that keyword in
their titles ([Title contains keyword]), and a multidata unit displaying a
scrollable block of search results. Through the scroller unit it is possible to
move to the first, previous, next, and last blocks of results.

Automatic and transport links. In some applications, it may be necessary
to differentiate a specific link behavior, whereby the content of some units is
displayed as soon as the page is accessed, even if the user has not navigated
its incoming link. This effect can be achieved by using automatic links. An
automatic link, graphically represented by putting a label “A” over the link,
is “navigated” in the absence of a user’s interaction when the page that
contains the source unit of the link is accessed.

Also, there are cases in which a link is used only for passing contextual
information from one unit to another and thus is not rendered as an anchor.
This type of link is called a transport link, to highlight that the link enables
only parameter passing and not interaction. Transport links are graphically
represented as dashed arrows.

232 M. Brambilla et al.

RecentMoviesList
RecentMovies Movie detail
Index CumMovie:OID ovie detalls Actors multidata
CurrMovie:OID
— 8 . 2O
i Movie Actor
RecentMovie [OID=CurrMovie] [MovieToActor (CurrMovie)]

Figure 9.5. Example of automatic and transport links.

Consider the example in Figure 9.5, extending the content of the page
Recent Movies List shown in Figure 9.4. The link between the index and
the data unit has been defined as automatic: When the page is accessed, the
details of the first movie appearing in the index will be shown to the user,
without the need for her interaction. A multidata unit has been added to
show the names of the actors playing in the selected movie. A transport link
is used to pass the OID of the current movie to the multidata unit. This OID
is used by the multidata unit in a parametric selector associated with the
MovieToActor relationship defined between the entities Movie and Actor to
retrieve only the actors associated with the current movie. Note that the
automatic link admits the user’s interaction for selecting a different movie
and is thus rendered as an anchor; conversely, the output link of the data unit
does not enable any selection and thus is defined as transport and is not
rendered as an anchor.

Global parameters. In some cases, contextual information is not
transferred point to point during navigation but can be set as globally
available to all the pages of the site view. This is possible through global
parameters, which abstract the implementation-level notion of session-
persistent data.

Parameters can be set through the Set unit and consumed within a page
through a Get unit. The visual representation of such two units is reported in
Table 9.3. An example of use of the get unit will be shown in the next
subsection.

Operations. In addition to the specification of read-only Web sites, where
user interaction is limited to information browsing, WebML also supports
the specification of services and content management operations requiring
write access over the information hosted in a site (e.g., the filling of a
shopping trolley or an update of the users’ personal information). WebML
offers additional primitives for expressing built-in update operations, such as
creating, deleting, or modifying an instance of an entity (represented through
the create, delete, and modify units, respectively) or adding or dropping a

9. Designing Web Applications with WebML and WebRatio 233

relationship between two instances (represented through the connect and
disconnect unit, respectively). The visual representation of such units is
reported in Table 9.4.

Table 9.3. The WebML Global Parameter Units

Get Unit Set Unit
Get unit Set unit
Oo— —0
Parameter Parameter

Table 9.4. The WebML Operation Units

Create Modify Delete Connect Disconnect
Unit Unit Unit Unit Unit
Create Modify Delete Connect Disconnect

5% 1 8% | 8° | ~°) |~°
O O S O

Entity Entity Entity Relationship Relationship
<param := value> [Conditions] [conditions]
<param := value>

Other utility operations extend the previous set. For example, /ogin and
logout units (see Table 9.5) are respectively used (1) for managing access
control and verifying the identity of a user accessing the application site
views and (2) for closing the session of a logged user.

Operation units do not publish the content to be displayed to the user but
execute some processing as a side effect of the navigation of a link. Like
content units, operations may have a source object (either an entity or a
relationship) and selectors, may receive parameters from their input links,
and may provide values to be used as parameters of their output links. The
result of executing an operation can be displayed in a page by using an
appropriate content unit, for example, a data or multidata unit, defined over
the objects updated by the operation.

234 M. Brambilla et al.

Table 9.5. Login and Logout Operations, Supporting Site View Access Control

Login Unit Logout Unit

Regardless of their type, WebML operations may have multiple incoming
contextual links, which provide the parameters necessary for executing the
operation. One of the incoming links is the activating link (the one followed
by the user for triggering the operation), while the others just transport
contextual information and parameters, for example, the identifiers of some
objects involved in the operation.

Two or more operations can be linked to form a chain, which is activated
by firing the first operation. Each operation can have two types of output
links: one OK link and one KO link. The former is followed when the
operation succeeds; the latter when the operation fails. The selection of the
link to follow (OK or KO) is based on the outcome of the operation
execution and is under the responsibility of the operation implementation.

InsertComment

Entry unit Create Connect ‘ Connect
Movie details Commen
C 1 l
> @ ——
(5 Get unit UserComment UserCommemTo UserCommentTo
Movie RegisteredUser Movie

b

CurrentUser

Figure 9.6. Example of content management.

The example in Figure 9.6 shows the content of the Insert Comment page
in the Movies area. Through the entry unit the user can insert a comment for
the movie currently displayed by the Movie details data unit. A get unit is
defined to retrieve the data of the currently logged user, which have been
stored in a global parameter after the login. When the user submits a comment,
a chain of operations is triggered and executed: First, a new comment instance
is created in the UserComment entity, containing the text inserted by the user;
then, the new comment is associated to the current user (by creating a new

9. Designing Web Applications with WebML and WebRatio 235

instance of the relationship UserCommentToRegisteredUser) and to the
current movie (relationship UserCommentToMovie). In the example, KO links
are not explicitly drawn: By default, they lead the user to the page from which
the operation chain has been triggered.

9.2.3 Other Development Phases

The phases following conceptual modeling consist of implementing the
application, testing and evaluating it in order to improve its internal and
external quality, deploying it on top of a selected architecture, and
maintaining and possibly evolving the application once it has been deployed.

As described in more details in Section 9.3, the WebRatio development
environment (WebModels, 2006) largely assists the implementation phase.
First of all, it offers a visual environment for drawing the data and hypertext
conceptual schemas. Such visual specifications are then stored as XML
documents, which are the inputs for the WebML code generator, which then
produces the data and hypertext implementation.

For space reasons, the remaining phases of the application life cycle are
only hinted at in this chapter, but they are nonetheless well supported by
WebML and WebRatio. In particular:

e The model-driven approach benefits the systematic testing of
applications, thanks to the availability of the conceptual model and the
model transformation approach to code generation (Baresi et al., 2005).
With respect to the traditional testing of applications, the focus shifts
from verifying individual Web applications to assessing the correctness
of the code generator. The intuition is that if one could ensure that the
code generator produces a correct implementation for all legal and
meaningful conceptual schemas (i.e., combinations of modeling
constructs), then testing Web applications would reduce to the more
treatable problem of validating the conceptual schema. The research
work conducted in this area has shown that it is possible to quantitatively
evaluate the confidence in the correctness of a model-driven code
generator, by formally measuring the coverage of a given test set (that is,
of a set of sample conceptual schemas) with respect to the entire universe
of syntactically admissible schemas. Different notions of coverage have
been proposed, and heuristic rules have been derived for minimizing the
number of test cases necessary to reach the desired coverage level of the
testing process.

e Model-driven development also fosters innovative techniques for quality
assessment. The research in this area has led to a framework for the
model-driven and automatic evaluation of Web application quality
(Fraternali et al., 2004; Lanzi et al., 2004; Meo and Matera, 2006). The

236 M. Brambilla et al.

framework supports the static (i.e., compile-time) analysis of conceptual
schemas and the dynamic (i.e., run-time) collection of Web usage data to
be automatically analyzed and compared with the navigation dictated by
the conceptual schema. The static analysis is based on the discovery in
the conceptual schema of design patterns and on their automatic
evaluation against quality attributes encoded as rules. Conversely, usage
analysis consists of the automatic examination and mining of enriched
Web logs, called conceptual logs (Fraternali et al., 2003), which correlate
common HTTP logs with additional data about (1) the units and link
paths accessed by the users, and (2) the database objects published within
the viewed pages.

e In a model-driven process, maintenance and evolution also benefit from
the existence of a conceptual model of the application. Requests for
changes can in fact be turned into changes at the conceptual level, either
to the data model or to the hypertext model. Then, changes at the
conceptual level are propagated to the implementation. This approach
smoothly incorporates change management into the mainstream
production life cycle and greatly reduces the risk of breaking the software
engineering process due to the application of changes solely at the
implementation level.

9.3 IMPLEMENTATION

Application development with WebML is assisted by WebRatio
(WebModels, 2006), a commercial tool for designing and implementing
Web applications. The architecture of WebRatio (shown in Figure 9.7)
consists of two layers: a design layer, providing functions for the visual
editing of specifications, and a run-time layer, implementing the basic
services for executing WebML units on top of a standard Web application
framework.

The design layer includes a graphical user interface (shown in Figure 9.8)
for data and hypertext design, which produces an internal representation in
XML of the WebML models. A data mapping module, called Database
Synchronizer, maps the entities and relationships of the conceptual data
schema to one or more physical data sources, which can be either created by
the tool or pre-existing. The Database Synchronizer can forward- and
reverse-engineer the logical schema of an existing data source, propagate the
changes from the conceptual data model to the physical data sources, and
vice versa.

9. Designing Web Applications with WebML and WebRatio

Unit library (WebRatio Design Layer ") Style sheet library

el S e =
Data Design | |Site Design| | Presentation (HTML)

A

library * * *
(XML %SL) Third party

authoring

Custom unit

Data Mapping

tools

Y,
Data \ / Built-in tag
Sources libraries
[Code Generator |

Y

Custom
components

Application Server
&3 g S

WebRatio Runtime Layer

Figure 9.7. The WebRatio architecture.

B WebRatio 4.2- [Acme]
Flo Edl Yiew Jenplsies Yiwrigs Team Teals beb
St HEH e K han W DG EALER G T
& B EE T NP YT eURR Prep—— i
e ifes 10 BFlEH%S 2@ mee aEER0Ras 98 & 224
T ik Muvel L =l
= Sie visws an 5 i
<8 A Atminitraoe e 1 il
=& feme il =
1 Service visws » W
I ivicked Faramsters el
p
B
o
&
= S View [home ek &
Hanne Walue 3
Ware e ik 1
Home Page = |
Lorfnsris =
Frotectes! = I
Sarure = - A | 2

Figure 9.8. WebRatio’s graphical user interface.

237

238 M. Brambilla et al.

A third module (called EasyStyler Presentation Designer) offers
functionality for defining the presentation style of the application, allowing
the designer to create XSL stylesheets from XHTML mock-ups, associate
XSL styles with WebML pages, and organize page layout, by arranging the
relative position of content units in each page.

The design layer is connected to the run-time layer by the WebRatio code
generator, which exploits XSL transformations to translate the XML
specifications visually edited in the design layer into application code
executable within the run-time layer, built on top of the Java2EE platform.
In particular, a set of XSL translators produces a set of dynamic page
templates and unit descriptors, which enable the execution of the application
in the run-time layer. A dynamic page template (e.g., a JSP file) expresses
the content and markup of a page in the markup language of choice (e.g., in
HTML, WML, etc.). A unit descriptor is an XML file that expresses the
dependencies of a WebML unit from the data layer (e.g., the name of the
database and the code of the SQL query computing the population of an
index unit).

The design layer, code generator, and run-time layer have a plug-in
architecture: New software components can be wrapped with XML
descriptors and made available to the design layer as custom WebML units,
the code generator can be extended with additional XSL rules to produce the
code needed for wrapping user-defined components, and the components
themselves can be deployed in the run-time application framework. As
described in the following section, such a plug-in architecture has been
exploited to extend WebRatio to support new WebML constructs that have
been recently defined for covering advanced modeling requirements.

9.4 ADVANCED FEATURES

The core concepts of WebML have been extended to enable the specification
of complex applications, where Web services can be invoked, the navigation
of the user is driven by process model specifications, and page content and
navigation may be adapted (like in a multichannel, mobile environment). In
the next subsections we briefly present the extensions that have been
integrated in the WebML model for designing service-enabled, process-
enabled, and context-aware Web applications.

9. Designing Web Applications with WebML and WebRatio 239

9.4.1 Service-Enabled Web Applications

Web services have emerged as essential ingredients of modern Web
applications: They are used in a variety of contexts, including Web portals
for collecting information from geographically distributed providers or B2B
applications for the integration of enterprise business processes.

To describe Web services interactions, WebML has been extended with
Web service units (Manolescu et al., 2005), implementing the WSDL (W3C,
2002) classes of Web service operations.

We start by recalling some basic aspects of WSDL, providing the
foundation of the proposed WebML extensions. A WSDL operation is the
basic unit of interaction with a service and is performed by exchanging
messages.

Two categories of operations are initiated by the client:

e One-way operations consist of a message sent by the client to the service.

e Request-response operations consist of one request message sent by the
client and one response message built by the service and sent back to the
client.

Two other operation categories are initiated by the service:

e Notification operations consist of messages sent to the service.

o Solicit and response operations are devised for receiving request
messages sent to the service and providing messages as responses to the
client.

WebML supports all four categories of operations. In particular, we
interpret the operations initiated by the service as a means for Web services
publishing. Therefore, we assume that these operations will not be used
within the traditional hypertext schemas representing the Web site, but
within appropriate Service views, which contain the definition of published
services. The operations initiated by the client are instead integrated within
the specification of the Web application. In the following subsections we
will see how they can be specified in WebML and present some examples
applied to the Movie database running case.

9.4.1.1 Modeling Web Applications Integrated with Web Services

The specification of Web service invocation from within a Web application
exploits the request-response and one-way operations. Here we show an
example of a request-response operation. Suppose we want to extend the
Movie database Web application with the possibility of retrieving books
related to a particular movie from a remote Web service (e.g., the Amazon

240 M. Brambilla et al.

Web service). Assume that the request-response operation SearchBooks
allows one to obtain a list of books meeting search criteria provided as input
to the service (e.g., keywords contained in the title). The remote Web service
responds with the list of books meeting the given search criteria.

The WSDL request-response operation is modeled through the request-
response unit, whose graphical notation is shown in Figure 9.9. This
operation involves two messages: the message sent to the service and the
message received from the service. The corresponding unit is labeled with
the Web service operation name and includes two arrows that represent the
two messages. This operation is triggered when the user navigates one of its
input links; from the parameters transferred by these links, a message is
composed and then sent to a remote service as a request. The user waits until
the arrival of the response message from the invoked service; then she can
resume navigation from the page reached by the output link of the Web
service operation unit.

Search page Book page

Movie details

Enter data SearchBooks XML-in BookIndex
@ — 11 j%iﬂ . =

Movie 6 é
Book

Book

\4

Figure 9.9. Example of usage of the request-response operation.

In the example in Figure 9.9, the user can browse to the Search page,
where an entry unit permits the input of search criteria, preloaded from the
currently selected movie. From this information, a request message is
composed and sent to the searchBooks operation of the Web service
exposed by the service provider. The user then waits for the response
message, containing a list of books satisfying the search criteria. From these
options, a set of instances of the Book entity is created through the XML-in
operation unit (which receives as input XML data and transforms them into
relational data) and displayed to the user by means of the Book Index unit;
the user may continue browsing, e.g., by choosing one of the displayed
books. Further details about data transformations and about the storage of
data retrieved from Web services can be found in recent publications
(Manolescu et al., 2005).

One-way operations are modeled in a similar way: The main difference is
that the service will not provide any response. Therefore, once the message
is sent to the service, the user continues navigation without waiting for the
response.

9. Designing Web Applications with WebML and WebRatio 241

9.4.1.2 Modeling Web Services Publishing

WebML also supports the publication of Web services that can be invoked
by third-party applications. From the application point of view, no user
interaction is required in a published Web service. The actions to be
performed when the notification or the solicit-response operations are
triggered are not specified through pages, but as a chain of operations (e.g.,
for storing or retrieving data, or for executing generic operations such as
sending emails). Therefore, the publishing of Web services can be specified
separately from the site view of a Web application. We introduce the
following concepts:

e Service view: a collection of ports that expose the functionality of a Web
service through WSDL operations

e Port: the individual service, composed by a set of WSDL operations;
each individual WSDL operation is modeled through a chain of WebML
operations starting with a solicit-response and/or notification operation

Therefore, the business logic of a WSDL operation is described by a
chain of WebML operations, specifying the actions to be performed as a
consequence of the invocation of the service, and possibly building the
response message to be sent back to the invoker. Each WSDL operation
starts with a solicit unit, which triggers the service, and possibly ends with
the response unit, which provides a message back to the service. Here we
show an example of a solicit-response operation.

Suppose we want to extend the Movie database application with the
publication of a service providing the list of movies satisfying search
criteria. The WSDL operation is modeled through a chain of WebML
operations starting with the solicit unit (searchsolicit), shown in Figure
9.10. The solicit unit receives the SOAP message from the requester and
decodes the search keywords, passing them as parameters to the next
WebML operation in the sequence. This is a so-called XML-out (Manolescu
et al., 2005) operation unit, which extracts from the database the list of
movies that correspond to the specified conditions and formats it as an XML
document. After the XML-out operation, the composition of the response
message is performed through the response unit (SearchResponse).

SearchSolicit XML-out SearchResponse

SearchMovies Movie SearchMovies
[Attributes match Keywords]

Figure 9.10. Example of usage of the solicit-response operation.

242 M. Brambilla et al.

Notice that the schema of Figure 9.10 can be seen as the dual specification
of the SearchBooks service invocation pattern, represented in Figure 9.9.

In addition to the above-mentioned examples, WebML also supports the
exchange of asynchronous messages (Brambilla et al., 2004) and complex
Web service conversations (Manolescu et al., 2005).

From the implementation standpoint, the deployment and publishing of
Web services required the extension of the run-time WebRatio with a SOAP
listener able to accept SOAP requests.

9.4.2 Process-Enabled Web Applications

Today the mission of Web applications is evolving from the support of
online content browsing to the management of full-fledged collaborative
workflow-based applications, spanning multiple individuals and
organizations. WebML has been extended for supporting lightweight Web-
enabled workflows (Brambilla, 2003; Brambilla et al., 2003, 2007), thus
transferring the benefits of high-level conceptual modeling and automatic
code generation also to this class of Web applications.

Integrating hypertexts with workflows means delivering Web interfaces
that permit the execution of business activities and embodying constraints
that drive the navigation of users. The required extensions to the WebML
language are the following:

e Business process model: A new design dimension is introduced in the
methodology. It consists of a workflow diagram representing the
business process to be executed, in terms of its activities, the precedence
constraints, and the actors/roles in charge of executing each activity.

e Data model: The data model representing the domain information is
extended with a set of objects (namely, entities and relationships)
describing the meta-data necessary for tracking the execution of the
business process, both for logging and for constraints evaluation
purposes.

o Hypertext model: The hypertext model is extended by specifying the
business activity boundaries and the workflow-dependent navigation
links.

Besides the main models, the proposed extension affects the following
aspects of the WebML methodology:

o Development process: Some new phases are introduced in the
development process, to allow the specification of business processes
and their integration in the conceptual models (see Figure 9.11).

9. Designing Web Applications with WebML and WebRatio 243

e Design tools: A new view shall be introduced for supporting the design
of the workflow models within the WebML methodology.

e Automatic generation tools: A new transformer is needed for translating
workflow diagrams into draft WebML specifications of the Web
applications implementing the process specification.

WebML

WebRatio

; WE-driven ; WebML Runnin
i Business WebML editor © 9
editor Drocess hypertext hypertext hypertext code l web
' models generator shitek IS generator o application

Figure 9.11. Steps of the proposed methodology: Square boxes represent the design steps and
the involved tools; bubbles represent the expected results of each step.

The following sections present the details of the process-related
extensions, by referring to a specific aspect of the Internet movie database
case study, namely the subscription process. Details will be provided about
the new features of the development process, the business process modeling,
and the data and hypertext modeling.

9.4.2.1 Extensions to the Development Process

The development process is enriched by a set of new design tasks and
automatic transformations that addresses the workflow aspects of the
application. Figure 9.11 shows the expected steps of the development, the
results of each steps, and the involved tools: Through a visual workflow
editor, the analyst specifies the business process model to be implemented;
the designed workflow model can be processed by an automatic
transformation that generates a set of hypertext skeletons implementing the
specified behavior; the produced skeletons can be modified by designers by
means of CASE tools for conceptual Web application modeling; the
resulting models can be processed by automatic code generators that produce
the running Web application.

9.4.2.2 Workflow Model and Design Tool

Many standard notations have been proposed to express the structure of
business processes. For our purposes, we adopt the Business Process
Management Notation (BPMN), which covers the basic concepts required by
WIMC (Workflow Management Coalition) and is compatible with Web
service choreography languages (e.g., BPEL4WS) and standard business
process specification languages (e.g., XPDL). A visual design tool for
business processes has been implemented for covering this design phase.
The tool is an Eclipse plug-in and allows one to specify BPMN diagrams.

244 M. Brambilla et al.

Figure 9.12 shows a subscription process that could apply to the Movie
database scenario (the case study has been extended to avoid a simplistic
example): The user specifies whether he is a private customer or a company,
then he alternatively submits the company or his own personal information,
and finally a user manager accepts the subscription.

ava - Wehflow Diagram - Eclipse SBK
Fie Edk Havigete Search Project Run Window Help

ES (00 2@ B s I 7| §laewa

o T 0| [C R e N (1] x.java [messanzs.provettes =0

- [, sawquee

d i Covisbthn . #
| Fersanal deta submission forres
{ h, i i
O_, o type subitissin | — x [Jtare

~\ .
= X
W 4 .

L(_'anpmy dita submission

flaghtration accepmance] T

LIZER

D8 APPLICATION

b

ASER MANAGEER,

Froblems | avados | Dedaration | Cansake | Propertes 5 ==
Proaerly | vadue |
FO Clemer: 1D rell
P Elemerd Name b anpbeaton
Fe i %

Figure 9.12. Subscription process represented in BPMN in the BP design tool.

9.4.2.3 Data Model Extensions: Workflow Meta-Data

The extensions to the data model include some standard entities for
recording activities instances and process cases, thus allowing one to store
the state of the business process execution and enacting it accordingly. The
adopted meta-model is very simple (see Figure 9.13): The case entity stores
the information about each instantiation of the process, while the Activity
entity stores the status of each activity instance executed in the system. Each
activity belongs to a single case. Connections to user and application data
can be added, for the purpose of associating domain information to the
process execution. Typical requirements are the assignment of application
objects to activity instances and the tracking of the relation between an
activity and its executor (a user).

Notice that the proposed meta-model is just a guideline. The designer can
adopt more sophisticated meta-data schemas or even integrate with
underlying workflow engines through appropriate APIs (e.g., Web services)
for tracking and advancing the process instance.

9. Designing Web Applications with WebML and WebRatio 245

Activity
Case

ActivitylD
ActivityName
ActivityStatus 1:1 ON 822§L?ame
ActivityType CaseStatus
;g:zz:\?ame StartTimestamp
StartTimestamp EndTimestamp
EndTimestamp

Derived attributes:
/CaselD {Self.Activity2Case.CaselD}
/CaseName {Self Activity2Case.CaseName}

Figure 9.13. Workflow meta-data added to the data model.

9.4.2.4 Hypertext Model Extensions: Activities and Workflow Links

The hypertext model is extended with two new primitives:

e Activity: An activity is represented by an area tagged with a marker “A.”
The whole hypertext contained in the area is the implementation of the
activity.

o Workflow link: Workflow links are links that traverse the boundary of
any activity area. They are used for hypertext navigation, but their
behavior includes workflow logic, which is not explicitly visible in the
hypertext. Every link entering an activity represents the start of the
execution of the activity; every outgoing link represents the end of the
activity. The actual behavior of the workflow links is specified by a
category associated with the link.

Incoming links can be classified as Start link, allowing an existing
activity to start from scratch; Start case link, allowing one to create a new
case and a new activity and to start them; Create link, allowing one to create
a new activity and start it; Resume link, allowing one to resume the
execution of an activity once it has been suspended.

Outgoing links can be classified as Complete link, which closes the
activity and sets its status to completed; Complete case link, which closes the
activity and the whole case, setting their status to completed; Suspend link,
which suspends the execution of an activity (that can be resumed later
through a resume link); Terminate link, which closes the activity and sets its
status to terminated (e.g., for exception management).

Notice that if and switch units can be used to express navigation
conditions. Moreover, a specific approach has been studied for managing
exceptions within workflow-based Web applications (Brambilla et al., 2005;
Brambilla and Tziviskou, 2005), but it is not discussed here for the sake of

246 M. Brambilla et al.

brevity. Moreover, by combining workflows and Web services extensions,
the design of distributed processes can be obtained (Brambilla et al., 2006).

9.4.2.5 Mapping Workflow Schemas to Hypertext Models

Workflow activities are realized in the hypertext model by suitable
configurations of pages and units, enclosed within an activity area.
Workflow constraints must be turned into navigation constraints among the
pages of the activities and into data queries on the workflow meta-data for
checking the status of the process, thus ensuring that the data shown by the
application and user navigation respect the constraints described by the
process specification. The description of how the precedence and
synchronization constraints between the activities can be expressed in the
hypertext model is specified in Brambilla et al. (2003), which describes the
mapping between each workflow pattern and the corresponding hypertext.

A flexible transformation, depending on several tuning and style
parameters, has been included in the methodology for transforming
workflow models into skeletons of WebML hypertext diagrams.

The produced WebML model consists of an application data model,
workflow meta-data, and hypertext diagrams. The transformation supports
all the main WfMC precedence constraints, which include sequences of
activities, AND-, OR-, XOR- splits and joins, and basic loops.

Since no semantics is implied by the activity descriptions, the generated
skeleton can only implement the empty structure of each activity and the
hypertext and data queries that are needed for enforcing the workflow
constraints. The designer remains in charge of implementing the interface
and business logic of each activity. Additionally, it is possible to annotate
the activities with a set of predefined labels (e.g., create, update, delete,
browse), thus allowing the transformer tool to map the activity to a coarse
hypertext that implements the specified behavior.

Once the transformation has been accomplished, the result can be edited
with WebRatio (WebModels, 2006), thus allowing the designer to refine the
generated hypertext and to implement the internal behaviour of each activity.

9.4.2.6 Workflow-Based Hypertext Example

Figure 9.14 shows the hypertext diagram for the Personal Data
Submission activity, which is part of the example process depicted in Figure
9.12. Notice that the shown implementation is the final result of the two steps
of automatic hypertext skeleton generation and of hypertext refinement by
the designer. The link marked with the “...” label may come from any
hypertext fragment in the site view.

9. Designing Web Applications with WebML and WebRatio 247

Before starting the activity, a condition is checked for verifying that the
Company data submission activity is not started yet, since it is defined
as mutually exclusive with respect to the Personal Data Submission
activity (a corresponding XOR-split decision gateway is shown in Figure
9.14). Hence, the condition to be checked before starting Personal Data
Submission 1is that the instance of Company data submission activity
within the current case has a status not yet Active. Notice that we assume an
ordered set of possible values for the status (Created < Inactive < Active <
Suspended < Resumed < Completed), and at most one instance of the activity
Company data submission exists within a case, because of the construction
rules of the instances of the workflow. Therefore, the condition extracts the
activity of type Company data submission not yet started. If this instance
exists, the Start link is followed and the Personal Data Submission
activity is started (i.e., its status in the database is set to Active). The user
submits his own information and the Modify unit updates the database, then
the Complete link closes the activity and redirects the user to the home page.

User siteview w

/ Personal data submission activity
Home page

false Personal data submission page|

If unit
Data entry
- " O
L1 l
— k—(g—J
[CurrentCase .CaseToActivity .

Status < “Active” AND User
CurrentCase .CaseToActivity .
ActivitylD = “CompanySubm”]

Figure 9.14. Example of hypertext representing the Personal data submission activity.

9.4.3 Context-Aware Web Applications

WebML has also been applied to the design of adaptive, context-aware Web
applications (Ceri et al., 2003, 2006, 2007). The overall design process for
context-aware applications follows the activity flow typically used for
conventional Web applications. However, some new issues must be
considered for modeling and exploiting the context at the data level and for
modeling adaptive behaviors in the hypertext interface.

248

M. Brambilla et al.

9.4.3.1 Modeling User and Context Data

During data design, the user and context requirements can be translated into

three different subschemas complementing the application data (see Figure
9.15):

The User subschema, which clusters data about users and their access
rights to application data. In particular, the entity user provides a basic
profile of the application’s users, the entity Group allows access rights for
a group of users to be managed, and the entity siteview allows users
(and user groups) to be associated with specific hypertexts. In the case of
adaptive context-aware applications, users may require different
interaction and navigation structures, according to the varying properties
of the context.

The Personalization subschema, which consists of entities from the
application data associated with the user entity by means of relationships
expressing user preferences for some entity instances, or the user’s
ownership of some entity instances. For example, the relationship
between the entities User and UserComment in Figure 9.15 enables the
selection and the presentation to the user of the comments she has posted.
The relationship between the entities User and Movie represents the
preferences of the user for specific movies. The role of this subschema is
to support the customization of contents and services, which is one
relevant facet of adaptive Web applications.

Context subschema

Location Cinema
MinLon Name
MaxLon TN _1:1]| Address
MinLat Description
MaxLon Picture
0:N
1:1
Activity Device
Name CPU
Handycap InputDevice
Description Display
Memory
O0:N 1:N
Personalization
sub-schema 1: 1:1 Basic user sub-schema
UserComment oN oN User N i~ Group NN SiteView
Comment * — UserName g - 2 2 T
Rate ON) password GroupName SiteViewID
Title EMail
Comment Date
Movie O:N
Title
Year
Description
Official_Site

Figure 9.15. Three subschemas representing context data.

9. Designing Web Applications with WebML and WebRatio 249

e The Context subschema, including entities such as Device, Location,
and Activity, which describe context properties relevant for providing
adaptivity. Context entities are connected to the entity User to associate
each user with his (personal) context.

9.4.3.2 Identifying Context-Aware Pages

During hypertext design, adaptive requirements are considered to augment
the application’s front end with reactive capabilities. As illustrated in Figure
9.16, context-awareness in WebML can be associated with selected pages,
and not necessarily with the whole application. Location-aware applications,
for example, adapt “core” contents to the position of a user, but typical
“access pages” (including links to the main application areas) might not be
affected by the context of use.

We therefore tag adaptive pages with a C label (standing for “Context-
aware”) to distinguish them from conventional pages. This label indicates
that some adaptivity actions must be associated with the page. During
application execution, such actions must be evaluated prior to the
computation of the page, since they can serve to customize the page content
or to modify the navigation flow defined in the model.

Siteview
Conventional Conventional
Page 1 Page 2

Context-aware Page P: Context Parameter

Data Unit

“0ID:|Object
Identifier

Figure 9.16. Hypertext schema highlighting context-aware pages. Context-aware pages are
labeled with a “C” and are associated with a context cloud.

As shown in Figure 9.16, adaptivity actions are clustered within a confext
cloud. The cloud is external to the page, and the adaptivity actions that it
clusters are kept separate from the page specification. Such a notation
highlights the different roles played by pages and context clouds: The former

250 M. Brambilla et al.

act as providers of content and services, the latter act as modifiers of such
content and services.

In order to monitor the state of the context and execute adaptivity actions,
C-pages must be provided with autonomous intervention capabilities. The
standard HTTP protocol underlying most of today’s Web applications
implements a strict pull paradigm. In the absence of a proper push
mechanism, reactive capabilities can therefore be achieved by periodically
refreshing the viewed page and by triggering the execution of adaptivity
actions before the computation of the page content. This polling mechanism
“simulates” the active behavior necessary for making pages sensitive to the
context changes.

9.4.3.3 Specifying Adaptivity Actions in Context Clouds

Context clouds contain adaptivity actions expressed as sequences of WebML
operations and are associated with a page by means of a directed arrow, i.e.,
a link, exiting the C label. This link ensures communication between the
page logic and the cloud logic, since it can transport parameters derived from
the content of the page, useful for computing the actions specified within the
cloud. Vice versa, a link from the cloud to the page can transport parameters
computed by the adaptivity actions, which might affect the page contents
with respect to a new context.

The specification of adaptivity actions relies both on the use of the
standard WebML primitives and on a few novel constructs, related to the
acquisition and use of context data:

1. Acquisition and management of context data. This may consist of the
retrieval of context data from the context model stored within the data
source, or of the acquisition of fresh context data provided by device-
or client-side-generated URL parameters, which are then stored in the
application data source. These are the first actions executed every time
a C-page is accessed, for gathering an updated picture of the current
context.

2. Condition evaluation. The execution of some adaptivity actions may
depend on some conditions, e.g., evaluating whether the context has
changed and hence triggering some adaptivity actions.

3. Page content adaptivity. Parameters produced by context data
acquisition actions and by condition evaluation can be used for page
computation. They are sent back to the page by means of a link exiting
the context cloud and going to the page. The result is the display of a
page where the content is adapted to the current context.

4. Navigation adaptivity. The effect of executing the adaptivity actions
within the context cloud can be the redirection to a different page. The

9. Designing Web Applications with WebML and WebRatio

251

specification of context-triggered navigation just requires a link exiting
the context cloud to be connected to pages other than the cloud’s

source page.

5. Adaptivity of the hypertext structure. To deal with coarse-grained
adaptivity requirements, e.g., the change of device, role, or activity, the
adaptivity actions may lead to the redirection toward a completely

different site view.

6. Adaptivity of presentation properties. To support finer-grained
adjustments of the interface, the adaptivity actions may induce the run-
time modification of the presentation properties (look and feel, content
position and visibility, and so on).

Current Area Cinemas Page@

Get Longitude

Get Latitude

@— @—

Get Location

To Showtimes Cinemas Index
Page

N

Cinema
[Location_Cinema(L)]

>
P

é Lon La é)
Longitude Latitude

e
O

Location
[minLat < Lat < maxLat]
[minLon < Lon < maxLon]

[result=true]

L: Location.OID

[Location.OID != null]

LocationOID

OK
[result=false]

Alert Page

Figure 9.17. The WebML specification of adaptivity actions providing users with context-

aware information about cinemas.

Figure 9.17 illustrates an example of adaptivity actions, applied to the
Current Area Cinemas page. Upon page access, some adaptivity actions in
the cloud are executed, which may change the content of the page based on
the geographical position of the user. Specifically, the user’s Latitude and
Longitude are retrieved by the Get Longitude and Get Latitude units,
which are examples of the GetClientParameter operation unit, introduced in
WebML to access context data sensed at the client side. In the example, the
two parameters Longitude and Latitude represent the position coordinates
sensed through a user’s device equipped with a GPS module. The retrieved
position values are used by the Get Location unit to identify a (possible)

252 M. Brambilla et al.

location stored in the database for the current user’s position. Get Location
is a Get Data unit, a content unit for retrieving values (both scalars and sets)
from an entity of the data model without displaying them on a page. The
location OID is evaluated through an /f unit: If it is not null (i.e., the sensed
coordinates fall into a location stored in the application data source), the list
of cinemas in that location is visualized in the Current Area Cinemas page;
otherwise, the user is automatically redirected to the Alert page, where a
message notifies of the absence of information about cinemas in the current
area.

Figure 9.17 also models the alert page as context-aware; in particular,
this page shares its adaptivity actions with the Current Area Cinemas page.
Therefore, as soon as an automatic refresh of the alert page occurs, the
shared actions are newly triggered and the application is adapted to the
user’s new position.

More details on the WebML extensions for adaptivity and context-
awareness and on their implementation in WebRatio can be found in Ceri
et al. (2003, 2006, 2007).

9.5 INDUSTRIAL EXPERIENCE

We conclude the illustration of WebML with an overview of the most
significant aspects of transferring model-driven development to industrial
users. The reported activities are based on WebML and WebRatio, but we
deem that the achieved results demonstrate the effectiveness and economic
sustainability of MDD in a more general sense. As a case study, we focus on
the applications developed by Acer EMEA, the Europe, Middle East, and
South Africa branch of Acer, for which five years of experience and data are
available. In particular, we will review some of the realized projects,
highlighting their functional and nonfunctional requirements, their
dimensional parameters, and the key aspects of their development,
deployment, evolution, and economic evaluation. The experience started
with the first version of the Acer-Euro application (http://www.acer-
euro.com), which aimed at establishing a software infrastructure for
managing and Web-deploying the marketing and communication content of
an initial group of 14 countries out of the 31 European Acer national
subsidiaries. The content of Acer-Euro 1.0 included the following main
areas: About Acer, Products, News, Service & Support, Partner Area, and
Where to buy.

9. Designing Web Applications with WebML and WebRatio 253

HomePage

LocaiProduciGroups

ProductGroug N
[Country ToPraduciGroug] ™,

CutrentCountry

o Couniry s i
LocalHighlighiediaws LocalLinks
ngnlnl\u:nm"mmne'] L%:‘
[CourtryToMewsliem] [CoinieyTolink]

— LocalLinks
LocalHighlightedNews LocalProductGroups

Figure 9.18. The WebML specification of the home page of a national site of Acer-Euro (left)
and its rendition in HTML (right).

Figure 9.18 shows the home page of a national site of Acer-Euro (left)
and its rendition in HTML generated by WebRatio. The Acer-Euro 1.0
system supported two main functions:

1. Content publishing: comprising the architecture, tools, and processes
to make content about the Acer European Web sites available on the
Web to the users of the target countries.

2. Content management: comprising the architecture, tools, and
processes needed to gather, store, update, and distribute to the
destination countries the content related to the Acer European Web
sites.

Figure 9.19 shows the schedule and milestones of the Acer-Euro 1.0
project. Only 7 weeks elapsed from the approval of the new site map and
visual identity to the publishing of the 14 national Web sites and to the
delivery of the CMS to Acer employees. In this period, two distinct
prototypes were formally approved by the management: Prototype 1, with
50% of functionality, was delivered at the end of week 2; prototype 2, with
90% of functionality, at week 5. Overall, nine prototypes were constructed in
six weeks: two formal, seven for internal assessment.

The development team consisted of four persons: one business expert and
one junior developer from Acer, and one analyst and one Java developer
from Politecnico di Milano.

254

M. Brambilla et al.

Week 1 Week 2 Week3 | Week4 | Week5 | Week6 | Week7

Mo
M1
M2
M3
M4
M5
M6
M7
M8
M9

MI10
Mi11
M12
M13

PRI

$PR2

Mi):

M1

Mé6:

agreement ol site map and Visual Identity MS: initial stress lest and tuning

: prototype 1.0 (50% of features) + initial CMS M9: definition of application clustering policies
;approval of prototype V.1 + change list MI0; network configuration and country
M3:
M4:
M5:

prototype 2.0 (90% of feature) + revised CMS§ clustering
approval of prototype 2.0 M11: database and template installation
localized static texts and images ¢ MI2: content upload

localized dynamic database content M13: publishing of the 14 sites + CMS

M7: information on data and traffic of countries

Figure 9.19. The schedule and milestones of the Acer-Euro 1.0 project.

Figure 9.19 shows the most relevant figures of the project: only six weeks
of development plus one week of testing were sufficient for analyzing,
designing, implementing, verifying, documenting, and deploying a set of
midsized, functionally complex, multilingual Web applications. As illustrated
by the dimensional and economic parameters reported in Table 9.6, such result
has to be ascribed to

The high degree of automation brought to the process by the use of
the model-driven approach: More than 90% of the application and
database code were synthesized automatically by the WebRatio
development environment from the WebML models of the
applications, without the need to manually intervene on the produced
code.

The overall productivity of the development process: The productivity
value is obtained by counting the number of function points (FPs) of
the project and dividing this value by the number of staff-months

9. Designing Web Applications with WebML and WebRatio 255

employed in the development. The result is an average productivity
rate of 131.5 FP/staff month, which is 30% greater than the maximum
value expected for traditional programming languages in the Software
Productivity Research Tables (SPR, 2006). This latter result is a
consequence of the former: High automation implies a substantial
reduction of the manually written repetitive code and a high reuse of

design patterns.

Table 9.6 Main Dimensional and Economic Parameters of the Acer-Euro Project

Class Dimension Value
Time & Number of elapsed workdays 49
effort Number of development staff-months 6 staff-months (6 weeks x 4
(analysts and developers) persons)
Total number of prototypes 9
Average elapsed man days between consecutive 5.4
prototypes
Average number of development man days per prototype 15,5
Size Number of localized B2C Web sites 14
Number of localized CMS applications 4 (Admin, News, Product, Other)
Number of supported languages 12 for B2C Web sites, 5 for CMS
Number of data entry masks 39
Number of automatically generated database tables 46
Number of automatically generated database views 82
Number of automatically generated database queries 279 for extraction, 89 for update
Number of automatically generated JSP page templates 48
Number of automatically generated or reused Java classes 250
Number of automatically generated Java lines of code 12,500 Noncommented lines of
code
Degree of Number of manually written SQL statements 17 (SQL constraints)
automation Percentage of automatically generated SQL code 96%
Number of manually written/adapted Java classes /JSP 10% JSP templates manually
templates adapted
Percentage of automatically generated Java and JSP code 90% JSP templates, 100% Java
classes
Productivity | Number of function points 177 (B2C web site) + 612 (CMS) =
789
Average number of FP delivered per staff-month 131.5

Another critical success factor has been the velocity in focusing the
requirements, thanks to the rapid production of realistic prototypes. At the
end of week 2, the top management could already evaluate an advanced

256 M. Brambilla et al.

prototype, which incorporated 50% of the requested functionality, and this
initial round of requirement validation proved essential to the delivery of a
compliant solution in such a limited time. With respect to traditional
prototyping, which exploits a simplified architecture, WebRatio generates
code directly for the actual delivery platform; in this way, stress test and
architecture tuning could already start at week 1 on the very first prototype,
greatly improving the parallelism of work and further reducing time to
market.

The benefits of MDD were manifested not only in the development of the
first version, but were even more sensible in the maintenance and evolution
phase. Figure 9.20 shows the timeline of the additional releases and spin-off
projects of Acer-Euro. Four major releases of Acer-Euro were delivered
between 2001 and 2006, and the number of applications grew from the initial
5 to 13 intranet and Internet applications, serving more corporate roles and
supporting more sophisticated workflow rules.

V4.0
V2o V3o Extension to Acer PanAmerica
V10 Graphical Restyling Addition of new content areas 26 EU counties
14 countries 20 countries 26 countries Latina America and US

i A

v

AcerConnect V.1 AcerConnect V.2 AcerConnect V.3
2 countries (IT UK) Graphic restyling 25 countries
15 countries 65.000 registered pariners
80.000 registered users

Figure 9.20. The evolution of the Acer-Euro project in five years.

At the end of 2005, Acer-Euro was rolled out in 26 European countries
and extended also to the Acer Pan-American subsidiaries, including Latin
America and the United States. As early as June 2001, an extension of the
Acer-Euro platform was scheduled, to address the delivery and management
of content for the channel operators (Acer partners). This spin-off project,
called Acer Connect, is a multi-actor extranet application targeted to Acer
partners, characterized by the following features:

1. the segmentation of the users accessing the site into a hierarchy of
groups corresponding to both Acer’s and partners’ business functions

2. the definition of different access privileges and information visibility
levels to groups

9. Designing Web Applications with WebML and WebRatio 257

3. the provision of an Acer European administration role, able to
dynamically perform via the Web all administrative and monitoring tasks

4. the provision of an arbitrary number of nation-based and partner-based
administration roles, with responsibility for local content creation and
publishing, and local user administration

5. a number of group-tailored Web applications (e.g., sales, marketing)
targeting content to corporate-specific or partner-specific user
communities

6. the management of administrative and business functions in multiple
languages flexibly set by administrators and users

7. a security model storing group and individual access rights into a
centrally managed database, to enforce global control over a largely
distributed application

8. content personalization based on group-specific or user-specific
characteristics, for ensuring one-to-one relationships with partners

9. advanced communication and monitoring functions for the effective
tracking of partners’ activity and of Acer’s quality of services

The first version of Acer Connect was deployed in Italy and the UK in
December 2001, after only seven months of development and with an effort
of 24 staff-months. Today, Acer Connect is rolled out in 25 countries and
hosts 65,000 registered partners, delivering content and services to a
community of over 80,000 users. Acer Connect and Acer-Euro share part of
the marketing and communication content, and therefore the former project
was realized as an evolution of the latter; starting from the data model of
Acer-Euro, the specific functions of Acer Connect were added, and new
applications were modeled and automatically generated. The model-driven
approach greatly reduced the complexity of integration, because the high-
level models of the two systems were an effective tool for reasoning about
the functionality to reuse and develop.

Besides Acer Connect, several other projects were spun off, to exploit the
customer and partner communities gathered around these two portals. Figure
9.21 overviews the delivered B2C projects, which collectively total over
10,800,000 visits per month.

As a remark on the long-term sustainability of MDD, we note that,
despite their complexity and multinational reach, both Acer-Euro and Acer
Connect are maintained and evolved by one junior developer each, working
on the project at part time. In total, only 5 junior developers, allocated to the
projects at part time, maintain the 56 mission-critical Web applications
implemented by Acer with WebML.

258 M. Brambilla et al.

Server Configurator

65.000 companics
50,000 users.

25 counties

2 applications

Warranly extension program Financial Programs

21 countries, 9 applications Real time quotations

15.000 warranty extensions 4 counties

sold per month A 6000 quotations in first 6 months
Intograted with call conter and Acer Euro 1 application

financial partnors 10.800.000
visits per

Integrated content
managemant

0 Business Analysis
11 counties

J§ Virtual stock management
3 applications

B2E
25 countries
14 applications

Partner Extranet
65.000 companies
B0.000 users

25 counties,

16 applications

Figure 9.21. The main applications developed in Acer with WebML.

On the negative side of MDD, the initial training and switching costs
have been reported as the most relevant barrier. MDD requires nontechnical
knowledge on the modeling of software solutions, which must be acquired
with a mix of conventional and on-the-job training. Furthermore, developers
have their own previous consolidated skills and professional history, and
switching to a completely new development paradigm is felt to be a potential
risk. Acer estimates that it takes developers from 4 to 6 months to become
fully acquainted and productive with MDD, WebML, and WebRatio.
However, Acer’s figures demonstrate that the initial investment in human
capital required by MDD pays off in the mid-term. The number of
applications developed and maintained per unit of development personnel
increases with the developers’ expertise and exceeds 10 fully operational,
complex, and distributed Web applications per developer.

9.6 CONCLUDING REMARKS

In this chapter we have described the Web Modeling Language, a conceptual
notation for specifying the design of complex, distributed, multi-actor, and
adaptive applications deployed on the Web and on service-oriented
architectures using Web services. WebML was born in academia but soon
spun off to the industrial battlefield, where it faced the development of
complex systems with requirements often exceeding the expressive power of
the language. This fruitful interplay of academic design and industrial
experience made the language evolve from a closed notation for data-centric

9. Designing Web Applications with WebML and WebRatio 259

Web applications to an open and extensible framework for generalized
component-based development. The core capability of WebML is expressing
application interfaces as a network of collaborating components, which sit
on top of the core business objects. WebML incorporates a number of built-
in, off-the-shelf components for data-centric, process-centric, and Web
service-centric applications and lets developers define their own
components, by wrapping existing software artifacts and reverse-engineering
them. In other words, the essence of WebML boils down to a standard way
of describing components, their interconnection and passage of parameters,
their exposition in a user interface, and the rules for generating code from
their platform-independent model.

This flexibility allowed several extensions of the language, in the
direction of covering both new application requirements and deployment
architectures. The ongoing work is pursuing a number of complementary
objectives:

1. Extending the model-driven approach to all the phases of the
application life cycle: WebML is being used as a vehicle to investigate
the impact of MDD on development activities like business
requirement elicitation and reengineering, cost and effort estimation,
testing, quality evaluation, and maintenance.

2. Extending the capability of the user interface beyond classical
hypertexts: The expressive power of WebML is presently inadequate
to express Rich Internet Applications and classical client-server
applications; research is ongoing to identify the minimal set of
concepts needed to capture the Web interfaces of the future.

3. Broadening the range of deployment platforms: WebML and
WebRatio are being extended to target code generation for
nonconventional infrastructures. A version of WebRatio for digital
television has been already built, and experimentation is ongoing for
deploying applications on top of embedded systems and mobile
appliances for the DVB-H standard.

REFERENCES

Baresi, L., Fraternali, P., Tisi, M., and Morasca, S., 2005, Towards model-driven testing of a
Web application generator. Proceedings 5th International Conference on Web
Engineering (ICWE'05), Sydney, Australia, pp. 75-86.

Beck, K., 1999, Embracing change with extreme programming. /[EEE Computer, 32(10): 70-77.

Boehm, B., 1988, A spiral model of software development and enhancement. [EEE
Computer, 21(5): 61-72.

Booch, G., Rumbaugh, J., and Jacobson, 1., 1999, The Unified Modeling Language User
Guide (Object Technology Series), Addison-Wesley, Reading, MA.

260 M. Brambilla et al.

Brambilla, M., 2003, Extending hypertext conceptual models with process-oriented
primitives. Proceedings Conceptual Modeling (ER 2003), Chicago, IL, pp. 246-262.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., and Manolescu, 1., 2003, Specification and
design of workflow-driven hypertexts. Journal of Web Engineering, 1(2): 163—182.

Brambilla, M., Ceri, S., Comali, S., and Tziviskou, C., 2005, Exception handling in workflow-
driven Web applications. Proceedings World Wide Web International Conference
(WWW'05), Chiba, Japan, May 10-13, pp. 170-179.

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, 1., 2007, Process modeling in Web
applications. ACM Transactions on Software Engineering and Methodology. In print.

Brambilla, M., Ceri, S., Passamani, M., and Riccio, A., 2004, Managing asynchronous Web
services interactions. Proceedings ICWS 2004, pp. 80—87.

Brambilla, M., and Tziviskou, C., 2005, Fundamentals of exception handling within
workflow-based Web applications. Journal of Web Engineering, 4(1): 38-56.

Ceri, S., Daniel, F., Facca, F., Matera, M., and the MAIS Consortium, 2006, Front-end
methods and tools for the development of adaptive applications. In Mobile Information
Systems. Infrastructure and Design for Flexibility and Adaptivity, B. Pernici, ed., Springer-
Verlag, pp. 209-246.

Ceri, S., Daniel, F., and Matera, M., 2003, Extending WebML for modelling multi-channel
context-aware Web applications. Proceedings WISE '03 Workshops, IEEE Press, pp. 225—
233.

Ceri, S., Daniel, F., Matera, M., and Facca, F., 2007, Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology, 7(1), Article No. 2.
Ceri, S., Fraternali, P., and Bongio, A., 2000, Web Modeling Language (WebML): A

modeling language for designing Web sites. Computer Networks, 3(1-6): 137-157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., 2002,
Designing Data-Intensive Web Applications, Morgan Kaufmann, San Francisco.

Conallen, J., 2000, Building Web Applications with UML (Object Technology Series),
Addison-Wesley, Reading, MA.

Fraternali, P., Lanzi, P.L., Matera, M., and Maurino, A., 2004, Model-driven Web usage
analysis for the evaluation of Web application quality. Journal of Web Engineering, 3(2):
124-152.

Fraternali, P., Matera, M., and Maurino, A., 2003, Conceptual-level log analysis for the
evaluation of Web application quality. Proceedings LA-WEB 2003, IEEE Press, pp. 46-57.

Garzotto, F., Paolini, P., and Schwabe, D., 1993, HDM—A model-based approach to
hypertext application design. ACM Transactions on Information Systems, 11(1): 1-26.

Kruchten, P., 1999, The Rational Unified Process: An Introduction, Addison-Wesley,
Reading, MA.

Isakowitz, T., Sthor, E.A., and Balasubranian, P., 1995, RMM: A methodology for structured
hypermedia design. Communications of the ACM, 38(8): 34—44.

Lanzi, P.L., Matera, M., and Maurino, A., 2004, A framework for exploiting conceptual
modeling in the evaluation of Web application quality. Proceedings ICWE 2004, Springer-
Verlag, pp. 50-54.

Manolescu, 1., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P., 2005, Model-driven
design and deployment of service-enabled Web applications. ACM Transactions on
Internet Technology, 5(3): 439-479.

Meo, R., and Matera, M., 2006, Designing and mining Web applications: A conceptual
modeling approach. In Web Data Management Practices: Emerging Techniques and
Technologies, A. Vakali and G. Pallis, eds., Idea Group Publishing, Hershey, PA.

SPR (Software Productivity Research), 2006, SPR Programming Language Table—Version
PLT2005a. Retrieved February 2006 from http://www.spr.com.

9. Designing Web Applications with WebML and WebRatio 261

WebModels, 2006. WebRatio Tool Suite. Retrieved October 2006 from
http://www.webratio.com.

W3C, 2006, WSDL Web Service Description Language. Retrieved October 2006 from
https://www.w3.0rg/2002/ws/desc.

