
Software Production Process Using
Open Source Software

Javad K. HESHMATI ✦ 30-4-2006 ✦ 32 Pages

Dixite
Av. Louise 179, P.B.: 3, 1050 Brussels✦ www.dixite.com

mailto:jhe@dixite.com
www.dixite.com

Preface

Briefly describes the Software Production Process based onOpen Source Softwareresources.
It ends with a real case study in which open source software tools, libraries and middleware
are used as the building blocks of the project.

How to Read This Document

Chapter 1 gives a short background information about Dixite and Open Source.

Chapter 2 describesroles involved during the project life cycle as well as the produces
deliverables

Chapter 3 discusses in detail theproject life cycle. Each step of the cycle is divided to the
following section:

• Approach: explains the methodology, standards and best practices that are used

• Roles and Deliverables: indicates the roles involved and deliverables produced by
the cycle step

• Tools and Resources: provides software tools and resources that are used by the
team.

Chapter 4 provides a real case study in which open source software tools, libraries and
middleware are used as the building blocks of the project.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 2 / 32

CONTENTS

CHAPTER 1 Introduction 6
1.0.1. Why Using Open Source Software and Resources ?7

CHAPTER 2 Roles and Deliverables 8
2.1. Roles, Skills and Techniques .8

2.1.1. Business Analyst . 8
2.1.2. Requirement Analyst . 8
2.1.3. Software Architect . 8
2.1.4. Project Manager . 9
2.1.5. Lead Designer . 9
2.1.6. Programmer . 9
2.1.7. Technical Writer . 9
2.1.8. Tester . 9
2.1.9. User Interface Designer .10

2.2. Deliverables .10
2.2.1. Project Plan and Milestones .10
2.2.2. User Requirements Document .10
2.2.3. User Interface Design Document .10
2.2.4. Architectural Design Document .10
2.2.5. Detailed Design Document .10
2.2.6. User Manuals .10
2.2.7. Code .10
2.2.8. Test Cases .11
2.2.9. Test and Observation Reports .11

CHAPTER 3 Project Life Cycle 12
3.1. Planning .12

3.1.1. Approach .12
3.1.2. Roles and Deliverables .12
3.1.3. Tools and Resources .12

3.2. Requirement Analysis and Specification .13
3.2.1. Approach .13

Copyright c© Dixite 2006 30-4-2006 19:4✦ 3 / 32

CONTENTS

3.2.2. Roles and Deliverables .13
3.2.3. Tools and Resources .13

3.3. Design and Specification .14
3.3.1. Approach .14
3.3.2. Roles and Deliverables .14
3.3.3. Tools and Resources .14

3.4. Implementation and Unit Testing .15
3.4.1. Approach .15
3.4.2. Core Practices .15
3.4.3. Roles and Deliverables .16
3.4.4. Tools and Resources .16

3.5. System Integration and Testing .18
3.5.1. Approach .18
3.5.2. Roles and Deliverables .18
3.5.3. Tools and Resources .19

3.6. Delivery and Maintenance .19
3.6.1. Approach .19
3.6.2. Roles and Deliverables .19
3.6.3. Tools .19

CHAPTER 4 Case Study 20
4.1. CURIA II Project .20

4.1.1. Client .20
4.1.2. Problem .20
4.1.3. Solution .20
4.1.4. Conclusion .24

APPENDIX A Quick Reference 25

APPENDIX B Document Information 27
B.1. Document History .27

APPENDIX C Acronyms 28

Copyright c© Dixite 2006 30-4-2006 19:4✦ 4 / 32

LIST OF FIGURES

1.1. Software Production Life Cycle . 7

4.1. Software Architecture View .21
4.2. Development, Staging and Test Environment23

Copyright c© Dixite 2006 30-4-2006 19:4✦ 5 / 32

CHAPTER 1

Introduction

At Dixite, we use aprocessto produce our software product. Moreover, we are commited to
Open Source Software (OSS) standards, tools, libraries and middleware. By using this process
in combination with OSS based resources, we make sure that our software product is

• Correct it behaves according to the requirement specification

• Reliable that is our client can depend on it.

• Robust it behaves reasonably even in circumstances that were not anticipated in the
requirement specification. For example, when it encounters incorrect input data.

• Maintainable which allows for modifications and improvements with a limited amount
of work.

• Cost Effectivewhich means that the total cost of ownership is at a reasonable price.

In this document, we present our process and describe how we ensure the above qualities1. In
each step of the process, a brief explanation of ourapproachis given. Where appropriate, a
list of OSS,tools and resourcesare also provided. In the Last section of this document, we
provide a Case Study (see section 4.1) in which we outline our process and the usage of OSS
in our solution.

1Quality Control is also applied at each step of the process. Please refer to Dixite Quality Control Process
Document for more information.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 6 / 32

Figure 1.1: Software Production Life Cycle

1.0.1 Why Using Open Source Software and Resources ?

Total cost of ownership for OSS is often far less than proprietary software, especially as the
number of platforms increases. OSS does not impose license management costs and avoids
nearly all licensing litigation risks. OSS is often the most reliable software, and in many cases
has the best performance. OSS often has far better security, perhaps due to the possibility of
worldwide review.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 7 / 32

CHAPTER 2

Roles and Deliverables

2.1 Roles, Skills and Techniques

This section describes each role along with its required skills and techniques.

2.1.1 Business Analyst

An experienced person in the business domain. Knows how the business operates and can
answer questions about how things are done; what is stable; what is changing; what is
essentially attached to each concept and term.

• Skills: knowledgeable in the operation of the business and its plans

• Techniques: none related to designing the new system

2.1.2 Requirement Analyst

Knows enough of the business to examine the users’ requirements statements and enough of
the technology to ask for alternative requirements when solutions looks too hard.

• Skills: communications skills, thoroughness

• Techniques: domain object modeling (find the nouns, reduce them, check business rules,
apply cardinality rules)

2.1.3 Software Architect

Knows how to design the system as a whole. Responsible for major subdivisions and interfaces
within the system, performance targets, ensuring functioning of the overall system. Works
with the project manager (2.1.4) to prioritize and organize the project plan. Does high-level
design.

• Skills: ability to evaluate the entire system in his or her charge; ability to make global
and detailed technical decisions

Copyright c© Dixite 2006 30-4-2006 19:4✦ 8 / 32

2.1. ROLES, SKILLS AND TECHNIQUES

• Techniques: System analysis and modeling, performance modeling and estimations

2.1.4 Project Manager

Knows how to gather and integrate information from all stakeholders in the project (project
sponsors, architects, developers, testers, etc.) and put it together into a workable plan. Knows
how to fend off “feature creep” and other hazards of running the project. Responsible for the
process, with input from the other roles.

• Skills: motivation, observation, communication and planning

• Techniques: project estimation, management by team building and spirit

2.1.5 Lead Designer

Knows how to create frameworks and toolkits, knows the difference between strong and weak
designs, can monitor and coach other developers without demoralizing them. Reasonably
good communication skills. Designs subsystems, applying design techniques to the requirements.
Typically but not always the best programmer on the team.

• Skills: framework design, class design, communicating with new designers, programming

• Techniques: domain modeling, design by client interface, design by theory building or
design by intuition

2.1.6 Programmer

Knows how to design a complete and programmed set of classes from requirements and a
sketched design, good programming skills.

• Skills and Techniques: same as thelead designer

2.1.7 Technical Writer

Creates the external documentation, such as the class, screen, and test specifications, and first
draft user manual.

• Skills and Techniques: good at writing, familiar with the domain topics

2.1.8 Tester

Knows how to create and run test cases, given either the requirements document or the screen
specifications. Creates system test suits that can be run repeatedly (regression tests).

• Skills: creating test suites

• Techniques: white box and black box test creation, disturbance tests , and test recovery

Copyright c© Dixite 2006 30-4-2006 19:4✦ 9 / 32

2.2. DELIVERABLES

2.1.9 User Interface Designer

Knows how to create easy-to-use user interfaces. Know the U (UI) standards. Enforces
simplicity and consistency in the UI design. May have special training in gathering feedback
from users on the interface.

• Skills: able to learn users’ work needs and habits, and able to evaluate and test the
user-interface design

• Techniques: user-centered design and questionnaire-based testing

2.2 Deliverables

This section describes the main deliverables produces by a project life cycle. It is possible for
some of the deliverables to be started and undergoing change at the same time.

2.2.1 Project Plan and Milestones

2.2.2 User Requirements Document

This includes the system purpose; the use cases, the business rules and relationships that must
be preserved in the design; usability and performance requirements; and definitions of needed
interfaces to other systems or subsystems. This document is produced by thebusiness analyst
and thetechnical writer. The purpose of this document is to communicate with the project
sponsors, the user community, the external test team, and the function team over time.

2.2.3 User Interface Design Document

This document initially includes a description of the user metaphor, each screen’s purpose,
and the navigation among the screens. Over time, the details of each each screen added, along
with details of error conditions (if any). This is produced by theUI designer, Requirement
Analystandtechnical writer.

2.2.4 Architectural Design Document

This initially includes the major partitioning of the system into subsystems, each with its
purpose, responsibilities and interfaces. This is produces by thesoftware architect.

2.2.5 Detailed Design Document

2.2.6 User Manuals

Describes how the users will use various parts of the system. It is produced by the entire team,
reviewed by the users, and used for external test and to prepare training materials.

2.2.7 Code

This comprises the source code and the compiled, bound code for delivery.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 10 / 32

2.2. DELIVERABLES

2.2.8 Test Cases

These are the regression tests applied to every class, subsystem and total system.

2.2.9 Test and Observation Reports

A report that includes observation reports collected during testing.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 11 / 32

CHAPTER 3

Project Life Cycle

3.1 Planning

3.1.1 Approach

Our project managers decide what objectives are to be achieved, what resources are required to
achieve the objectives, how and when the resources are to be acquired. In the planning task we
basically determine the flow of information, people and products within Dixite. We plan over
and over as we progress. Of course, we revise our plans if necessary. Our project managers
verify the project staff performances against project plans and take corrective actions when
deviations occur. We useGantt Chartsfor several purposes, including scheduling, budgeting
and resource planning. We also useXP - Extreme Programming(Please refer toExtreme
Programming ExplainedBeck) principles for overall project management.

3.1.2 Roles and Deliverables

• Roles: Software Architect and Project Manager

• Deliverables: Project Plan and Milestones

3.1.3 Tools and Resources

Software and Utilities

ApacheMavenis used to split the project tasks and allocate resources.

XP website is consulted on a regular basis to keep up to date with the best practices of project
management.

PMI website is consulted on a regular basis to keep up to date with the best practices of
project management.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 12 / 32

http://maven.apache.org
http://www.xprogramming.com
http://www.pmi.org

3.2. REQUIREMENT ANALYSIS AND SPECIFICATION

Books, Guides and Templates

Planning Extreme ProgrammingKent Beck.

Fundamentals Of Software EngineeringChezzi.

The Unified Software Development ProcessBooch The Unified Software Development
Process.

3.2 Requirement Analysis and Specification

3.2.1 Approach

Understanding business objectives is essential. If requirement is misapplied it can become
a drain rather than a gain for the client. In this phase our engineers identify and document
the exact requirement for the system. To establish the requirements clearly and precisely,
we use Unified Modeling Language (UML) use cases to document the requirements. Please
refer toThe Unified Modeling Language User GuideBooch The Unified Modeling Language
User Guide. This phase producesuser manualsandsystem test plans. Where appropriate, a
prototypeis also prepared so that the client may verify the functional requirements.

3.2.2 Roles and Deliverables

• Roles: Requirement Analyst and Business Analyst

• Deliverables: User Requirements Document, User Interface Design Document and Test
Cases

3.2.3 Tools and Resources

Software and Utilities

CVS is used as document version managment tool.

DocBookandLATEX are used as document production framework for technical writing.

Argo UML software is used to prepare requirements’ use cases.

UML Resourcesis consulted on a regular basis to access up to-date UML specification and
resources.

Books, Guides and Templates

Extreme Programming InstalledInstalled.

The Unified Modeling Language User GuideBooch The Unified Modeling Language User
Guide.

UML Distilled Fowler.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 13 / 32

http://www.cvshome.org
http://www.docbook.org
http://www.tug.org/applications
http://argouml.tigris.org
http://www.uml.org

3.3. DESIGN AND SPECIFICATION

UML In A NutshellAlbir.

User Requirement Document (URD) TemplateHeshmati User Requirement Document
(URD) Template.

Software Requirement Document (SRD) TemplateHeshmati Software Requirement Document
(SRD) Template.

The LATEXCompanionGoossens/Samarin.

DocBook: The Definitive GuideNorman Walsh.

3.3 Design and Specification

3.3.1 Approach

Once the requirements for the system have been documented (refer to section 3.2), our
engineers design a software system to meet them. We split the design phase into two sub-
phases:Architectural Designand Detailed Design. In the Architectural Designwe deal
with the overall module organization and structure whereas in theDetailed Designwe refine
the Architectural Designby designing each module in details. Again we use UML (Please
refer toThe Unified Modeling Language User GuideBooch The Unified Modeling Language
User Guide) to specify Arcitectural Design Document (ADD) and Detialed Design Document
(DDD). Moreover, we practice the principles described in Extreme Programming (XP) (please
refer to Beck) to make sure that we’ll produce an open and cost-effective design.

3.3.2 Roles and Deliverables

• Roles: Software Architect, Lead Designer and User Interface Designer

• Deliverables: Architectural Design Document and Detailed Design Document

3.3.3 Tools and Resources

Software and Utilities

CVS is used as document management version control system.

Java Doc Tool, LATEX andDocBookare used as document production framework for technical
writing.

Argo UML software is used to prepare requirements’ use cases.

Xfig is used to perform high level design drawings.

XAE andXeenasoftware are used to design XML schemas.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 14 / 32

http://www.cvshome.org
http://www.tug.org/applications
http://www.docbook.org
http://argouml.tigris.org
http://www.xfig.org
http://xae.sunsite.dk
http://www.alphaworks.ibm.com/tech/xeena/index.html

3.4. IMPLEMENTATION AND UNIT TESTING

Books, Guides and Templates

The LATEXCompanionGoossens/Samarin.

DocBook: The Definitive GuideNorman Walsh.

The Unified Modeling Language User GuideBooch The Unified Modeling Language User
Guide.

UML Distilled Fowler.

UML In A NutshellAlbir.

Architectural Design Document (ADD) TemplateHeshmati Architectural Design Document
(ADD) Template.

3.4 Implementation and Unit Testing

3.4.1 Approach

In this phase we produce the actual code that will be tested, packaged and delivered as the
running system. The other phases (refer to section 3.2 and section 3.3) may also produce code,
such as prototypes, library modules and header files but these are for use by our engineers.
Individual modules developed in this phase are also unit tested before delivered to the next
phase. To code the system software efficiently, we rely upon our extensive experience in
addition to guides available from industry leaders.

3.4.2 Core Practices

Frequent Releases

At the end of every development iteration we plan a small release. This makes the development
progress more visible and tangible. To release frequently and reliably we use ourcustomized
built tools.

Test Driven Development

Our programmers define and implementunit testsfor every required feature of the system.
Theseprogrammer tests, orunit testsare put together, and every time any programmer release
any code to the repository, theseunit testsmust run correctly. This help out our programmers
detect any possible side effect right away.

Design Improvement

While in the development phase our engineers constantly improve the system design by
applyingrefactoringwhich emphasize on continuous design improvement.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 15 / 32

3.4. IMPLEMENTATION AND UNIT TESTING

Coding Standard

Our programmers follow a common coding standard which makes the overal software more
readable and therefore maintainable.

3.4.3 Roles and Deliverables

• Roles: Lead Designer and Programmer

• Deliverables: Code

3.4.4 Tools and Resources

Operating System (OS)

We mainly develop and deploy onGNU/Linux. In particular:DebianandRedhat.

Selection Criteria When the choice of the OS is left to us, we choose the OS taking into
account the following criteria:

• Reliability

• Scalability

• Performance

• Cost of hardware and software

• Availability of software

• Cost of training staff

Software and Utilities

Depending on the case at hand we use various programming languages. Some of the tools and
utilities are dependent on the programming language. Therefore this section is split into:

Section 3.4.4 lists common software tools that maybe used regardless of the choice of the
programming language.

Section 3.4.4 lists tools, Integrated Development Environment (IDE), servers and middleware
that maybe utilized while implementing in Java.

Section 3.4.4 lists utilities and runtime environment used while developing in Perl and/or
Hypertext Preprocessor (PHP).

Section 3.4.4 lists software utilities, IDE and database middleware that are used when coding
Structured Query Language (SQL).

Copyright c© Dixite 2006 30-4-2006 19:4✦ 16 / 32

http://www.linux.org
http://www.debian.org
http://www.redhat.com

3.4. IMPLEMENTATION AND UNIT TESTING

Common

Ant is used as the build tool.

CVS (Concurrent Versions System) is used as document management version control system.

Emacsis used as the general programming editor.

GNU/Bash shell and its utility programs are used as the general development and build
environment.

LDAP BrowserEditor (LBE) andVisual LDAP are used as the general Light Directory Access
Protocol (LDAP) clients for browsing and editing.

Vim is used for manipulating configuration files.

Coding in Java

ApacheTomcatis used as the servlet container and application server.

Eclipseis used as the Java Integrated Development and debug Environment.

OpenLDAP is used as the LDAP directory server.

Java2 Platform, StandardEdition and Java2 Platform, EnterpriseEdition is used for the Java
2 Platform, Enterprise Edition (J2EE) and Java 2 Platform, Standard Edition (J2SE)
compilations and runtime environment.

JBossis used as the J2EE server.

JUnit framework is used to perform unit testing.

Jinsightis used to perform profiling and code optimization.

Argo UML software is used to keep the software design and the software code synchronized.

JEdit is also used as the Java Integrated Development and debug Environment.

Coding in Perl/PHP

Active Perl is used as Perl runtime environment on Windows platform.

ApacheWebServeris used as the HyperText Transfer Protocol (HTTP) server.

PHP4 is used as the PHP runtime environment.

Perl5.6 is used as Perl runtime environment on GNU/Linux and Unix platforms.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 17 / 32

http://jakarta.apache.org/ant/index.html
http://www.cvshome.org
http://www.gnu.org/software/emacs/emacs.html
http://www.cygwin.com
http://www.iit.edu/~gawojar/ldap
http://www.cqsl.com
http://www.vim.org
http://jakarta.apache.org/tomcat/index.html
http://www.eclipse.org
http://www.openldap.org
http://java.sun.com/j2se/index.html
http://java.sun.com/j2ee/index.html
http://www.jboss.org
http://www.junit.org/index.htm
http://www.alphaworks.ibm.com/tech/jinsight/index.html
http://www.argouml.org
http://www.jedit.org
http://www.activeperl.com
http://httpd.apache.org
http://www.php.net
http://www.cpan.org

3.5. SYSTEM INTEGRATION AND TESTING

Coding in SQL

MySQL Database software is used as the Relational Database Management System (RDBMS)
when a free and light relational repository is preferred.

Books, Guides and Templates

Software Release and Build Guide (RBG)Heshmati Software Release and Build Guide
(RBG).

Design PatternsGamma.

Enterprise JavaBeans (3rd Edition)Monson-Haefel.

Effective Java Programming Language GuideBloch.

Thinking in Java (2nd Edition)Eckel.

Refactoring Improving The Design of Existing CodeFowler.

The Java Language SpecificationGosling.

Programming Pearls (2nd Edition)Bentley.

MySQLDuBois.

Java Design PatternsCooper.

Programming PerlWall.

Code Complete: A Practical Handbook of Software Constructionof Software Construction.

The Practice of ProgrammingKernighan/Pike.

Understanding And Deploying LDAP Directory ServersHows.

GNU EmacsCameron

Linux Administration HandbookEvi Nemeth/Boggs

3.5 System Integration and Testing

3.5.1 Approach

All the modules that have been developed before (see section 3.4) and unit tested indivitually
are put together in this phase and tested as a whole system. Tests are performed based on the
system test plan produced in the Requirement Analysis phase (refer to section 3.2).

3.5.2 Roles and Deliverables

• Roles: Tester

• Deliverables: Test and Observation Reports

Copyright c© Dixite 2006 30-4-2006 19:4✦ 18 / 32

http://www.mysql.com

3.6. DELIVERY AND MAINTENANCE

3.5.3 Tools and Resources

Software and Utilities

JUnit framework is used to perform unit testing.

Bugzilla is used to perform effective bug reporting and tracking.

Books, Guides and Templates

Fundamentals Of Software EngineeringChezzi

Software Release and Build Guide (RBG)Heshmati Software Release and Build Guide
(RBG)

3.6 Delivery and Maintenance

3.6.1 Approach

Once the system passes all the required tests specified in the test plan (refer to section 3.2.1),
it is packaged and delivered. At this stage the system enters the maintenance phase. Any
modification made to the system after initial delivery are usually attributed to this phase.

3.6.2 Roles and Deliverables

• Roles: Project Manager. In case of change requests, other roles defined in section 2.1
maybe needed.

• Deliverables: User Manuals. In case of change requests, other deliverables defined in
section 2.2 maybe delivered.

3.6.3 Tools

Software and Utilities

Bugzilla is used to register and followup the clientchange requestsand requested features.

Books and Guides

Extreme Programming ExplainedBeck.

Software Release and Build Guide (RBG)Heshmati Software Release and Build Guide
(RBG)

Software Installation Template (SIT)Heshmati Software Installation Template (SIT)

Copyright c© Dixite 2006 30-4-2006 19:4✦ 19 / 32

http://www.junit.org/index.htm
http://www.bugzilla.org
http://www.bugzilla.org

CHAPTER 4

Case Study

4.1 CURIA II Project

4.1.1 Client

Publication Office of the European Communities (OPOCE) and the European Court of Justice.

4.1.2 Problem

To provideindexationandsearchengines to index and query the jurisprudence text produced
by the European Court of Justice. The system is code named asCURIA II and should support:

• Complex search queries including Fuzzy and Proximity.

• Term highlighting.

• Different file formats: HyperText Markup Language (HTML), Potable Document
Format (PDF) and Extensible Markup Language (XML).

• Various Operating Systems: Windows NT, Windows 2000 and MacOS X.

• Internationalization, several European languages including Greek.

4.1.3 Solution

After evaluating the existing tools, libraries, middleware and their major characteristics,
strengths, and weaknesses, we put together an Open Source based Solution shown in figure 4.1
on the following page. Moreover, we setup a development and staging environment using
Open Source Software, as shown in figure 4.2 on page 23.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 20 / 32

4.1. CURIA II PROJECT

Software Architecture

Figure 4.1: Software Architecture View

CURIA II Application To fulfill the requirement, we chose a modular design split into three
main modules: Index Engine, Search Engine and a GUI Applet.

• Index Enginebased onApache Lucenewe implemented the required index engine.
It generates theindexdatabase that contains a compiled version of documents and is
optimized for quick lookup for a list of documents. Indexation is performed based on a
set of files in PDF, HTML and XML formats.

• Search Enginewe usedApache Xerces, Apache Luceneto parse and build the required
search queries. Moreover, theApache OROpackage was used to perform the required
Term Highlights.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 21 / 32

4.1. CURIA II PROJECT

• GUI Applet the J2SEwas used to implement and sign the Graphical User Interface
(GUI) applet which runs inMozilla and is used as the search engine front end. Using
Mozilla as the Applet container, we made sure that the application behavior is consistent
across various operating systems.

• Internationalizationwe used theInternationalizationfeature of the J2SE to support
various European languages.

• Error Managementto achieve a systematic error and log management, we used the
Apache Log4Jpackage.

Open Source Software and Middleware

• Ant is a Java-based build tool.

• Luceneis a high-performance, full-featured text search engine written entirely in Java.

• Mozilla is an open-source web browser, designed for standards compliance, performance
and portability.

• Xercesis a high performance, fully compliant XML parser.

• ORO is a set of text-processing Java classes that provide Perl5 compatible regular
expressions.

• Log4Jis a log and error management framework.

Java Runtime on GNU/Linux The application was developed using J2SE andEclipseon
GNU/Linux, theRedhatdistribution.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 22 / 32

http://ant.apache.org
http://jakarta.apache.org/lucene
http://mozilla.org
http://xml.apache.org/xerces2-j/index.html
http://jakarta.apache.org/oro/index.html
http://jakarta.apache.org/log4j/index.html
http://www.redhar.com

4.1. CURIA II PROJECT

Development Environment and Tools

Figure 4.2: Development, Staging and Test Environment

Design Tools An UML driven approach was chosen in which we used ArgoUML to do the
UML diagrams.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 23 / 32

4.1. CURIA II PROJECT

Development Tools

• GNU/Linux, theRedhatdistribution was selected as the main development platform,

• Sun J2SE 1.4 andEclipsewere used for coding the application.

• CVS Client was used to keep the source code synchronized with the main CVS
server.

• LATEX andDocBoookwere used for Specification and User documentation.

Build Tools

• CVS was used as the main repository of sources.

• Ant was used as the build tool.

Libraries and MiddleWare See section 4.1.3.

CVS ServerConcurrentVersionsSystem(CVS) server and client were used as the Version
Control system.

Bug Tracker ServerBugzilla was used as the Bug Tracking system.

Backup ServerAmandaserver was used as the backup server.

4.1.4 Conclusion

During the life cycle of the CURIA II project, we experienced that usingopen source software
is a reasonable (or even superior, depending on the case in hand) approach to using their
proprietary competition. Therefore, the usage of OSS should always be considered when
developing software.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 24 / 32

http://www.redhat.com
http://www.eclipse.org
http://www.cvshome.org
http://www.tug.org/applications
http://docbook.org
http://www.cvshome.org
http://ant.apache.org
http://www.cvshome.org
http://www.bugzilla.org
http://www.amanda.org

APPENDIX A

Quick Reference

Table below lists Dixite guides and templates that should be used at various steps of the
software production process. Refer to theReferencessection to lookupInternal Resources
Ref.

Section Title Internal Resources Ref.
3.1 Planning
3.2 Requirement Analysis and SpecificationHeshmati User

Requirement Document
(URD) Template and
Heshmati Software
Requirement Document
(SRD) Template

3.3 Designand Specification Heshmati Architectural
Design Document
(ADD) Template

3.4 Implementation and Unit Testing Heshmati Software
Release and Build Guide
(RBG)

3.5 System Integration and Testing Heshmati Software
Release and Build Guide
(RBG)

3.6 Delivery and Maintenance Heshmati Software
Release and Build Guide
(RBG) and Heshmati
Software Installation
Template (SIT)

continued ...

Table A.1: Quick Reference to Dixite Guides and Templates

Copyright c© Dixite 2006 30-4-2006 19:4✦ 25 / 32

Section Title Internal Resources Ref.
Table A.1:Quick Reference to Dixite Guides and Templates

Copyright c© Dixite 2006 30-4-2006 19:4✦ 26 / 32

APPENDIX B

Document Information

B.1 Document History

Revision Date Modified Sections Modification
1.0a Jun 5, 2002 Document Creation All
1.0b Nov 14, 2002 Appendix A was created,

and sections: 3.6, 3.3,
3.4, 3.5, 3.2 were
modified.

Updated the Books,
Guides and Templates
sub-sections.

1.0b1 Nov 15, 2002 Appendix A Added a new paragraph.
1.0b2 May 9, 2003 Section 4.1 Add a new chapter.

Table B.1:Document Revision History

Copyright

This document can be freely redistributed according to the terms of the GNU Free Documentation
License (GFDL). To learn more about GFDL, visit the followingURL# www.gnu.org/copyleft/fdl.html.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 27 / 32

http://www.gnu.org/copyleft/fdl.html

APPENDIX C

Acronyms

ADD Arcitectural Design Document

CVS Concurrent Versions System

DDD Detialed Design Document

GUI Graphical User Interface

HTML HyperText Markup Language is the lingua franca for publishing on the World Wide
Web. Having gone through several stages of evolution, today’s HTML has a wide range
of features reflecting the needs of a very diverse and international community wishing
to make information available on the Web.

HTTP HyperText Transfer Protocol The underlying protocol used by the World Wide Web.
HTTP defines how messages are formatted and transmitted, and what actions Web
servers and browsers should take in response to various commands.

IDE Integrated Development Environment

J2EE Java 2 Platform, Enterprise Edition

J2SE Java 2 Platform, Standard Edition

LDAP Light Directory Access Protocol

OS Operating System

OSS Open Source Software

PDF Potable Document Format

PHP Hypertext Preprocessor is a widely-used general-purpose scripting language that is
especially suited for Web development and can be embedded into HTML.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 28 / 32

PL/SQL Procedural Language extension to SQL Oracle’s Procedural Language extension to
SQL. PL/SQL’s language syntax, structure and data types are similar to that of ADA.
The language includes object oriented programming techniques such as encapsulation,
function overloading, information hiding (all but inheritance), (. . .)

PMI Project Management Institute

RDBMS Relational Database Management System

RGB Software Release and Build Guide

SQL Structured Query Language A standardised query language for requesting information
from a database.

SRD Software Requirement Document

UML Unified Modeling Language

UI User Interface

URD User Requirement Document

VM Virtual Machine A self-contained operating environment that behaves as if it is a separate
computer. For example, Java applets run in a Java virtual machine (VM) that has no
access to the host operating system.

XML Extensible Markup LanguageThe Extensible Markup Language (XML) is the universal
format for structured documents and data on the Web.

XP Extreme Programming Extreme Programming, or XP, is a lightweight discipline of
software development based on principles of simplicity, communication, feedback, and
courage.

SA Software Architect

PM Project Manager

XSL eXtensible Stylesheet Language is a language for expressing stylesheets.

Copyright c© Dixite 2006 30-4-2006 19:4✦ 29 / 32

BIBLIOGRAPHY

Albir: UML In A Nutshell. O’REILLY, 1988, ISBN 1–56592–448–7

Beck: The Extreme Programming Explained. Software Development, 2000, ISBN 0–201–
61641–6

Bentley, Jon: Programming Pearls (2nd Edition). Addison-Wesley, 1999, ISBN 0201657880

Bloch, Joshua:Effective Java Programming Language Guide. Addison-Wesley, 2001, ISBN
0201310058

Booch, Jacobson, Rumbaurgh:The Unified Modeling Language User Guide. Addison-Wes-
ley, 1999, Object Technology, ISBN 0–201–57168–4

Booch, Jacobson, Rumbaurgh:The Unified Software Development Process. Addison-Wes-
ley, 1999, Object Technology, ISBN 0–201–57169–2

Cameron, Rosenblatt, Raymond:GNU Emacs. O’REILLY, 1996, ISBN 1–56592–152–6

Chezzi, Jazayeri, Mandrioli: Fundamentals Of Software Engineering. Prentice-Hall, 1991,
ISBN 0–13–818204

Cooper: Java Design Patterns. Addison-Wesley, 2000, ISBN 0–201–48539–7

DuBois: MySQL. New Riders, 2000, ISBN 0–7357–0921–1

Eckel, Bruce: Thinking in Java (2nd Edition). Prentice-Hall, 2000, ISBN 0130273635

Evi Nemeth, Garth Snyder, Trent R. Hein/Boggs, Adam:Linux Administration Handbook.
Prentice-Hall, 2002, ISBN 0130084662

Fowler: REFACTORING Improving The Design of Existing Code. Addison-Wesley, 1999,
ISBN 0–201–48567–2

Fowler, Scott: UML Distilled. Addison-Wesley, 1988, ISBN 0–201–32563–2

Gamma, Helm, Johnson Vlissides:Design Patterns. Addison-Wesley, 1996, ISBN 0–201–
63361–2

Goossens, Mittelbach/Samarin: The Latex Companion. Addison-Wesley, 1994, An
excellent reference, ISBN 0–201–54199–8

Copyright c© Dixite 2006 30-4-2006 19:4✦ 30 / 32

Bibliography

Gosling, Joy, Steele Bracha:The Java Language Specification. Second Edition edition. Ad-
dison-Wesley, 2000, ISBN 0–201–31008–2

Heshmati, Javad K.: Software Release and Build Guide (RBG). Av. Lousie 179, 1050
Brussels Belgium: Dixite, Available on Dixite intranet website.

Heshmati, Javad K.: Architectural Design Document (ADD) Template. Dixite Internal
Template, 10 2002, Available on Dixite intranet website.

Heshmati, Javad K.: Software Installation Template (SIT). Dixite Internal Template, 10
2002, Available on Dixite intranet website.

Heshmati, Javad K.: Software Requirement Document (SRD) Template. Dixite Internal
Template, 10 2002, Available on Dixite intranet website.

Heshmati, Javad K.: User Requirement Document (URD) Template. Dixite Internal
Template, 10 2002, Available on Dixite intranet website.

Hows, Smith, Good: Understanding And Deploying LDAP Directory Servers.
MACMILLAN TECHNICAL PUBLISHING, 1999, ISBN 0–57870–070–1

Installed, Extreme Programming: Ron Jeffries, Ann Anderson, Chet Hendrickson. Addi-
son-Wesley, 2000, ISBN 0201708426

Kent Beck, Martin Fowler: Planning Extreme Programming. Addison-Wesley, 2000, ISBN
0201710919

Kernighan, Brian W. /Pike, Rob: The Practice of Programming. Addison-Wesley, 1999,
ISBN 0–201–61586–X

Monson-Haefel, Richard: Enterprise JavaBeans (3rd Edition). O’REILLY, 2001, ISBN
0596002262

Norman Walsh, Leonard Muellner: DocBook: The Definitive Guide. O’REILLY, 1999,
ISBN 1–56592–580–7

Software Construction, Code Complete: A Practical Handbook of:Steve C McConnell.
Microsoft Press, 1993, ISBN 1556154844

Wall, Christiansen, Schwartz: Programming Perl. O’REILLY, 1996, ISBN 1–56592–149–6

Copyright c© Dixite 2006 30-4-2006 19:4✦ 31 / 32

Index

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the definition; numbers in roman refer to the pages where the
entry is used.

Bug Tracking
Bugzilla, 19

Build Tools
Ant, 17
CVS, 13, 14, 17
GNU/Bash, 17

Database
MySQL, 18
SQL, 17

Documentation
Argo UML, 13, 14
DocBook, 13, 14
Latex, 13, 14
UML Resources, 13
Xfig, 14

Editor
Emacs, 17
LDAP

LBE, 17
Visual LDAP, 17

XML
XAE, 14

Xeena, 14

Java
Debugger

Jinsight, 17
Design

Design Patterns, 18
Refactoring, 18
Together, 17

IDE
Argo UML, 17
Eclipse, 17
JEdit, 17

JDK
J2EE, 17
J2SE, 17
Java 2 Platform, 17

JUnit, 19
Profiler

Jinsight, 17
Unit Testing

JUnit, 17

Methodology

UML, 13
XP (Extreme

Programming), 12

OS
Debian, 16
GNU/Linux, 16
Redhat, 16

Perl
Active Perl, 17
CPAN, 17

PHP, 17
Project Management

Apache Maven, 12
PMI, 12
XP (Extreme

Programming), 12

Server
Apache Tomcat, 17
Apache Web Server, 17
JBoss, 17
Open LDAP, 17

Copyright c© Dixite 2006 30-4-2006 19:4✦ 32 / 32

	Introduction
	Why Using Open Source Software and Resources ?
	Roles and Deliverables
	Roles, Skills and Techniques
	Business Analyst
	Requirement Analyst
	Software Architect
	Project Manager
	Lead Designer
	Programmer
	Technical Writer
	Tester
	User Interface Designer
	Deliverables
	Project Plan and Milestones
	User Requirements Document
	User Interface Design Document
	Architectural Design Document
	Detailed Design Document
	User Manuals
	Code
	Test Cases
	Test and Observation Reports
	Project Life Cycle
	Planning
	Approach
	Roles and Deliverables
	Tools and Resources
	Requirement Analysis and Specification
	Approach
	Roles and Deliverables
	Tools and Resources
	Design and Specification
	Approach
	Roles and Deliverables
	Tools and Resources
	Implementation and Unit Testing
	Approach
	Core Practices
	Roles and Deliverables
	Tools and Resources
	System Integration and Testing
	Approach
	Roles and Deliverables
	Tools and Resources
	Delivery and Maintenance
	Approach
	Roles and Deliverables
	Tools
	Case Study
	CURIA II Project
	Client
	Problem
	Solution
	Conclusion
	Quick Reference
	Document Information
	Document History

	Acronyms

