
Anarchism Triumphant:
Free Software and the Death of Copyright

Eben Moglen∗

June 28, 1999

I Software as Property: The Theoretical Paradox

SOFTWARE: no other word so thoroughly connotes the practical and
social effects of the digital revolution. Originally, the term was purely tech-
nical, and denoted the parts of a computer system that, unlike “hardware,”
which was unchangeably manufactured in system electronics, could be al-
tered freely. The first software amounted to the plug configuration of ca-
bles or switches on the outside panels of an electronic device, but as soon as
linguistic means of altering computer behavior had been developed, “soft-
ware” mostly denoted the expressions in more or less human-readable lan-
guage that both described and controlled machine behavior.1

∗Professor of Law & Legal History, Columbia Law School. Prepared for delivery at the
Buchmann International Conference on Law, Technology and Information, at Tel Aviv Uni-
versity, May 1999; my thanks to the organizers for their kind invitation. I owe much as
always to Pamela Karlan for her insight and encouragement. Thanks are due to Jerome
Saltzer, Richard Stallman, and numerous others who freely contributed corrections and im-
povements to this paper. I especially wish to thank the programmers throughout the world
who made free software possible.

1The distinction was only approximate in its original context. By the late 1960s cer-
tain portions of the basic operation of hardware were controlled by programs digitally en-
coded in the electronics of computer equipment, not subject to change after the units left
the factory. Such symbolic but unmodifiable components were known in the trade as “mi-
crocode,” but it became conventional to refer to them as “firmware.” Softness, the term
“firmware” demonstrated, referred primarily to users’ ability to alter symbols determining
machine behavior. As the digital revolution has resulted in the widespread use of comput-
ers by technical incompetents, most traditional software—application programs, operating

1



Moglen / Anarchism Triumphant 2

That was then and this is now. Technology based on the manipulation
of digitally-encoded information is now socially dominant in most aspects
of human culture in the “developed” societies.2 The movement from ana-
log to digital representation—in video, music, printing, telecommunica-
tions, and even choreography, religious worship, and sexual gratification—
potentially turns all forms of human symbolic activity into software, that
is, modifiable instructions for describing and controlling the behavior of
machines. By a conceptual back-formation characteristic of Western scien-
tistic thinking, the division between hardware and software is now being
observed in the natural or social world, and has become a new way to ex-
press the conflict between ideas of determinism and free will, nature and
nurture, or genes and culture. Our “hardware,” genetically wired, is our
nature, and determines us. Our nurture is “software,” establishes our cul-
tural programming, which is our comparative freedom. And so on, for
those reckless of blather.3 Thus “software” becomes a viable metaphor for
all symbolic activity, apparently divorced from the technical context of the
word’s origin, despite the unease raised in the technically competent when
the term is thus bandied about, eliding the conceptual significance of its
derivation.4

But the widespread adoption of digital technology for use by those who
do not understand the principles of its operation, while it apparently li-
censes the broad metaphoric employment of “software,” does not in fact
permit us to ignore the computers that are now everywhere underneath
our social skin. The movement from analog to digital is more important
for the structure of social and legal relations than the more famous if less

systems, numerical control instructions, and so forth—is, for most of its users, firmware.
It may be symbolic rather than electronic in its construction, but they couldn’t change it
even if they wanted to, which they often—impotently and resentfully—do. This “firming
of software” is a primary condition of the propertarian approach to the legal organization
of digital society, which is the subject of this paper.

2Within the present generation, the very conception of social “development” is shifting
away from possession of heavy industry based on the internal-combustion engine to “post-
industry” based on digital communications and the related “knowledge-based” forms of
economic activity.

3Actually, a moment’s thought will reveal, our genes are firmware. Evolution made the
transition from analog to digital before the fossil record begins. But we haven’t possessed
the power of controlled direct modification. Until the day before yesterday. In the next
century the genes too will become software, and while I don’t discuss the issue further
in this paper, the political consequences of unfreedom of software in this context are even
more disturbing than they are with respect to cultural artifacts.

4See, e.g., J. M. Balkin, Cultural Software: a Theory of Ideology (New Haven: Yale University
Press, 1998).



Moglen / Anarchism Triumphant 3

certain movement from status to contract.5 This is bad news for those legal
thinkers who do not understand it, which is why so much pretending to
understand now goes so floridly on. Potentially, however, our great tran-
sition is very good news for those who can turn this new-found land into
property for themselves. Which is why the current “owners” of software
so strongly support and encourage the ignorance of everyone else. Unfor-
tunately for them—for reasons familiar to legal theorists who haven’t yet
understood how to apply their traditional logic in this area—the trick won’t
work. This paper explains why.6

We need to begin by considering the technical essence of the familiar de-
vices that surround us in the era of “cultural software.” A CD player is a
good example. Its primary input is a bitstream read from an optical stor-
age disk. The bitstream describes music in terms of measurements, taken
44,000 times per second, of frequency and amplitude in each of two audio
channels. The player’s primary output is analog audio signals.7 Like ev-
erything else in the digital world, music as seen by a CD player is mere
numeric information; a particular recording of Beethoven’s Ninth Sym-
phony recorded by Arturo Toscanini and the NBC Symphony Orchestra
and Chorale is (to drop a few insignificant digits) 1276749873424, while
Glenn Gould’s peculiarly perverse last recording of the Goldberg Varia-
tions is (similarly rather truncated) 767459083268.

5See Henry Sumner Maine, Ancient Law: Its Connection with the Early History of Society,
and its Relation to Modern Ideas, 1st edn. (London: J. Murray, 1861).

6In general I dislike the intrusion of autobiography into scholarship. But because it is
here my sad duty and great pleasure to challenge the qualifications or bona fides of just
about everyone, I must enable the assessment of my own. I was first exposed to the craft
of computer programming in 1971. I began earning wages as a commercial programmer
in 1973—at the age of thirteen—and did so, in a variety of computer services, engineering,
and multinational technology enterprises, until 1985. In 1975 I helped write one of the first
networked email systems in the United States; from 1979 I was engaged in research and
development of advanced computer programming languages at IBM. These activities made
it economically possible for me to study the arts of historical scholarship and legal cunning.
My wages were sufficient to pay my tuitions, but not—to anticipate an argument that will
be made by the econodwarves further along—because my programs were the intellectual
property of my employer, but rather because they made the hardware my employer sold
work better. Most of what I wrote was effectively free software, as we shall see. Although I
subsequently made some inconsiderable technical contributions to the actual free software
movement this paper describes, my primary activities on its behalf have been legal: I have
served for the past five years (without pay, naturally) as general counsel of the Free Software
Foundation.

7The player, of course, has secondary inputs and outputs in control channels: buttons or
infrared remote control are input, and time and track display are output.



Moglen / Anarchism Triumphant 4

Oddly enough, these two numbers are “copyrighted.” This means, sup-
posedly, that you can’t possess another copy of these numbers, once fixed
in any physical form, unless you have licensed them. And you can’t turn
767459083268 into 2347895697 for your friends (thus correcting Gould’s
ridiculous judgment about tempi) without making a “derivative work,” for
which a license is necessary.

At the same time, a similar optical storage disk contains another number,
let us call it 7537489532. This one is an algorithm for linear programming
of large systems with multiple constraints, useful for example if you want
to make optimal use of your rolling stock in running a freight railroad.
This number (in the US) is “patented,” which means you cannot derive
7537489532 for yourself, or otherwise “practice the art” of the patent with
respect to solving linear programming problems no matter how you came
by the idea, including finding it out for yourself, unless you have a license
from the number’s owner.

Then there’s 9892454959483. This one is the source code for Microsoft
Word. In addition to being “copyrighted,” this one is a trade secret. That
means if you take this number from Microsoft and give it to anyone else
you can be punished.

Lastly, there’s 588832161316. It doesn’t do anything, it’s just the square
of 767354. As far as I know, it isn’t owned by anybody under any of these
rubrics. Yet.

At this point we must deal with our first objection from the learned. It
comes from a creature known as the IPdroid. The droid has a sophisticated
mind and a cultured life. It appreciates very much the elegant dinners at
academic and ministerial conferences about the TRIPs, not to mention the
privilege of frequent appearances on MSNBC. It wants you to know that
I’m committing the mistake of confusing the embodiment with the intel-
lectual property itself. It’s not the number that’s patented, stupid, just the
Kamarkar algorithm. The number can be copyrighted, because copyright
covers the expressive qualities of a particular tangible embodiment of an
idea (in which some functional properties may be mysteriously merged,
provided that they’re not too merged), but not the algorithm. Whereas the
number isn’t patentable, just the “teaching” of the number with respect to
making railroads run on time. And the number representing the source
code of Microsoft Word can be a trade secret, but if you find it out for your-
self (by performing arithmetic manipulation of other numbers issued by
Microsoft, for example, which is known as “reverse engineering”), you’re
not going to be punished, at least if you live in some parts of the United
States.



Moglen / Anarchism Triumphant 5

This droid, like other droids, is often right. The condition of being a
droid is to know everything about something and nothing about anything
else. By its timely and urgent intervention the droid has established that the
current intellectual property system contains many intricate and ingenious
features. The complexities combine to allow professors to be erudite, Con-
gressmen to get campaign contributions, lawyers to wear nice suits and
tassel loafers, and Murdoch to be rich. The complexities mostly evolved
in an age of industrial information distribution, when information was in-
scribed in analog forms on physical objects that cost something significant
to make, move, and sell. When applied to digital information that moves
frictionlessly through the network and has zero marginal cost per copy, ev-
erything still works, mostly, as long as you don’t stop squinting.

But that wasn’t what I was arguing about. I wanted to point out some-
thing else: that our world consists increasingly of nothing but large num-
bers (also known as bitstreams), and that—for reasons having nothing to
do with emergent properties of the numbers themselves—the legal system
is presently committed to treating similar numbers radically differently. No
one can tell, simply by looking at a number that is 100 million digits long,
whether that number is subject to patent, copyright, or trade secret protec-
tion, or indeed whether it is “owned” by anyone at all. So the legal system
we have—blessed as we are by its consequences if we are copyrights teach-
ers, Congressmen, Gucci-gulchers or Big Rupert himself—is compelled to
treat indistinguishable things in unlike ways.

Now, in my role as a legal historian concerned with the secular (that is,
very long term) development of legal thought, I claim that legal regimes
based on sharp but unpredictable distinctions among similar objects are
radically unstable. They fall apart over time because every instance of the
rules’ application is an invitation to at least one side to claim that instead of
fitting in ideal category A the particular object in dispute should be deemed
to fit instead in category B, where the rules will be more favorable to the
party making the claim. This game—about whether a typewriter should
be deemed a musical instrument for purposes of railway rate regulation,
or whether a steam shovel is a motor vehicle—is the frequent stuff of legal
ingenuity. But when the conventionally-approved legal categories require
judges to distinguish among the identical, the game is infinitely lengthy,
infinitely costly, and almost infinitely offensive to the unbiased bystander.8

8This is not an insight unique to our present enterprise. A closely-related idea forms
one of the most important principles in the history of Anglo-American law, perfectly put
by Toby Milsom in the following terms:



Moglen / Anarchism Triumphant 6

Thus parties can spend all the money they want on all the legislators and
judges they can afford—which for the new “owners” of the digital world is
quite a few—but the rules they buy aren’t going to work in the end. Sooner
or later, the paradigms are going to collapse. Of course, if later means two
generations from now, the distribution of wealth and power sanctified in
the meantime may not be reversible by any course less drastic than a bel-
lum servile of couch potatoes against media magnates. So knowing that
history isn’t on Bill Gates’ side isn’t enough. We are predicting the future
in a very limited sense: we know that the existing rules, which have yet the
fervor of conventional belief solidly enlisted behind them, are no longer
meaningful. Parties will use and abuse them freely until the mainstream of
“respectable” conservative opinion acknowledges their death, with uncer-
tain results. But realistic scholarship should already be turning its attention
to the clear need for new thoughtways.

* * * * *

When we reach this point in the argument, we find ourselves contend-
ing with the other primary protagonist of educated idiocy: the econodwarf.
Like the IPdroid, the econodwarf is a species of hedgehog,9 but where the
droid is committed to logic over experience, the econodwarf specializes in
an energetic and well-focused but entirely erroneous view of human na-
ture. According to the econodwarf’s vision, each human being is an indi-
vidual possessing “incentives,” which can be retrospectively unearthed by
imagining the state of the bank account at various times. So in this instance
the econodwarf feels compelled to object that without the rules I am lam-
pooning, there would be no incentive to create the things the rules treat as
property: without the ability to exclude others from music there would be
no music, because no one could be sure of getting paid for creating it.

The life of the common law has been in the abuse of its elementary ideas. If the
rules of property give what now seems an unjust answer, try obligation; and
equity has proved that from the materials of obligation you can counterfeit
the phenomena of property. If the rules of contract give what now seems an
unjust answer, try tort. ... If the rules of one tort, say deceit, give what now
seems an unjust answer, try another, try negligence. And so the legal world
goes round.

S. F. C. Milsom, Historical Foundations of the Common Law, 2nd edn. (London: Butterworths,
1981), 6.

9See Isaiah Berlin, The Hedgehog and the Fox; an Essay on Tolstoy’s View of History (New
York: Simon and Schuster, 1953).



Moglen / Anarchism Triumphant 7

Music is not really our subject; the software I am considering at the mo-
ment is the old kind: computer programs. But as he is determined to deal
at least cursorily with the subject, and because, as we have seen, it is no
longer really possible to distinguish computer programs from music per-
formances, a word or two should be said. At least we can have the satisfac-
tion of indulging in an argument ad pygmeam. When the econodwarf grows
rich, in my experience, he attends the opera. But no matter how often he
hears Don Giovanni it never occurs to him that Mozart’s fate should, on his
logic, have entirely discouraged Beethoven, or that we have The Magic Flute
even though Mozart knew very well he wouldn’t be paid. In fact, The Magic
Flute, the St. Matthew’s Passion, and the motets of the wife-murderer Carlo
Gesualdo are all part of the centuries-long tradition of free software, in the
more general sense, which the econodwarf never quite acknowledges.

The dwarf’s basic problem is that “incentives” is merely a metaphor, and
as a metaphor to describe human creative activity it’s pretty crummy. I
have said this before,10 but the better metaphor arose on the day Michael
Faraday first noticed what happened when he wrapped a coil of wire a-
round a magnet and spun the magnet. Current flows in such a wire, but we
don’t ask what the incentive is for the electrons to leave home. We say that
the current results from an emergent property of the system, which we call
induction. The question we ask is “what’s the resistance of the wire?” So
Moglen’s Metaphorical Corollary to Faraday’s Law says that if you wrap
the Internet around every person on the planet and spin the planet, soft-
ware flows in the network. It’s an emergent property of connected human
minds that they create things for one another’s pleasure and to conquer
their uneasy sense of being too alone. The only question to ask is, what’s
the resistance of the network? Moglen’s Metaphorical Corollary to Ohm’s
Law states that the resistance of the network is directly proportional to the
field strength of the “intellectual property” system. So the right answer to
the econodwarf is, resist the resistance.

Of course, this is all very well in theory. “Resist the resistance” sounds
good, but we’d have a serious problem, theory notwithstanding, if the
dwarf were right and we found ourselves under-producing good software
because we didn’t let people own it. But dwarves and droids are formalists
of different kinds, and the advantage of realism is that if you start from the
facts the facts are always on your side. It turns out that treating software as
property makes bad software.

10See The Virtual Scholar and Network Liberation.
http://emoglen.law.columbia.edu/my pubs/nospeech.html



Moglen / Anarchism Triumphant 8

II Software as Property: The Practical Problem

In order to understand why turning software into property produces bad
software, we need an introduction to the history of the art. In fact, we’d bet-
ter start with the word “art” itself. The programming of computers com-
bines determinate reasoning with literary invention.

At first glance, to be sure, source code appears to be a non-literary form
of composition.11 The primary desideratum in a computer program is that
it works, that is to say, performs according to specifications formally de-
scribing its outputs in terms of its inputs. At this level of generality, the
functional content of programs is all that can be seen.

But working computer programs exist as parts of computer systems,
which are interacting collections of hardware, software, and human beings.
The human components of a computer system include not only the users,
but also the (potentially different) persons who maintain and improve the
system. Source code not only communicates with the computer that exe-
cutes the program, through the intermediary of the compiler that produces
machine-language object code, but also with other programmers.

The function of source code in relation to other human beings is not
widely grasped by non-programmers, who tend to think of computer pro-
grams as incomprehensible. They would be surprised to learn that the bulk
of information contained in most programs is, from the point of view of the
compiler or other language processor, “comment,” that is, non-functional
material. The comments, of course, are addressed to others who may need
to fix a problem or to alter or enhance the program’s operation. In most
programming languages, far more space is spent in telling people what the
program does than in telling the computer how to do it.

The design of programming languages has always proceeded under the
dual requirements of complete specification for machine execution and in-
formative description for human readers. One might identify three basic

11Some basic vocabulary is essential. Digital computers actually execute numerical in-
structions: bitstrings that contain information in the “native” language created by the ma-
chine’s designers. This is usually referred to as “machine language.” The machine lan-
guages of hardware are designed for speed of execution at the hardware level, and are not
suitable for direct use by human beings. So among the central components of a computer
system are “programming languages,” which translate expressions convenient for humans
into machine language. The most common and relevant, but by no means the only, form of
computer language is a “compiler.” The compiler performs static translation, so that a file
containing human-readable instructions, known as “source code” results in the generation
of one or more files of executable machine language, known as “object code.”



Moglen / Anarchism Triumphant 9

strategies in language design for approaching this dual purpose. The first,
pursued initially with respect to the design of languages specific to particu-
lar hardware products and collectively known as “assemblers,” essentially
separated the human- and machine-communication portions of the pro-
gram. Assembler instructions are very close relatives of machine-language
instructions: in general, one line of an assembler program corresponds
to one instruction in the native language of the machine. The program-
mer controls machine operation at the most specific possible level, and (if
well-disciplined) engages in running commentary alongside the machine
instructions, pausing every few hundred instructions to create “block com-
ments,” which provide a summary of the strategy of the program, or doc-
ument the major data structures the program manipulates.

A second approach, characteristically depicted by the language COBOL
(which stood for “Common Business-Oriented Language”), was to make
the program itself look like a set of natural language directions, written in
a crabbed but theoretically human-readable style. A line of COBOL code
might say, for example “MULTIPLY PRICE TIMES QUANTITY GIVING
EXPANSION.” At first, when the Pentagon and industry experts began the
joint design of COBOL in the early 1960s, this seemed a promising ap-
proach. COBOL programs appeared largely self-documenting, allowing
both the development of work teams able to collaborate on the creation
of large programs, and the training of programmers who, while special-
ized workers, would not need to understand the machine as intimately
as assembler programs had to. But the level of generality at which such
programs documented themselves was wrongly selected. A more formu-
laic and compressed expression of operational detail “expansion = price x
quantity,” for example, was better suited even to business and financial ap-
plications where the readers and writers of programs were accustomed to
mathematical expression, while the processes of describing both data struc-
tures and the larger operational context of the program were not rendered
unnecessary by the wordiness of the language in which the details of exe-
cution were specified.

Accordingly, language designers by the late 1960s began experimenting
with forms of expression in which the blending of operational details and
non-functional information necessary for modification or repair was more
subtle. Some designers chose the path of highly symbolic and compressed
languages, in which the programmer manipulated data abstractly, so that
“A x B” might mean the multiplication of two integers, two complex num-
bers, two vast arrays, or any other data type capable of some process called



Moglen / Anarchism Triumphant 10

“multiplication,” to be undertaken by the computer on the basis of the con-
text for the variables “A” and “B” at the moment of execution.12 Because
this approach resulted in extremely concise programs, it was thought, the
problem of making code comprehensible to those who would later seek
to modify or repair it was simplified. By hiding the technical detail of
computer operation and emphasizing the algorithm, languages could be
devised that were better than English or other natural languages for the
expression of stepwise processes. Commentary would be not only unnec-
essary but distracting, just as the metaphors used to convey mathematical
concepts in English do more to confuse than to enlighten.

A How We Created the Microbrain Mess

Thus the history of programming languages directly reflected the need
to find forms of human-machine communication that were also effective
in conveying complex ideas to human readers. “Expressivity” became a
property of programming languages, not because it facilitated computa-
tion, but because it facilitated the collaborative creation and maintenance
of increasingly complex software systems.

At first impression, this seems to justify the application of traditional
copyright thinking to the resulting works. Though substantially involv-
ing “functional” elements, computer programs contained “expressive” fea-
tures of paramount importance. Copyright doctrine recognized the merger
of function and expression as characteristic of many kinds of copyrighted
works. “Source code,” containing both the machine instructions necessary
for functional operation and the expressive “commentary” intended for hu-
man readers, was an appropriate candidate for copyright treatment.

True, so long as it is understood that the expressive component of soft-
ware was present solely in order to facilitate the making of “derivative
works.” Were it not for the intention to facilitate alteration, the expressive
elements of programs would be entirely supererogatory, and source code
would be no more copyrightable than object code, the output of the lan-
guage processor, purged of all but the program’s functional characteristics.

The state of the computer industry throughout the 1960s and 1970s, when
the grundnorms of sophisticated computer programming were established,

12This, I should say, was the path that most of my research and development followed,
largely in connection with a language called APL (“A Programming Language”) and its
successors. It was not, however, the ultimately-dominant approach, for reasons that will be
suggested below.



Moglen / Anarchism Triumphant 11

concealed the tension implicit in this situation. In that period, hardware
was expensive. Computers were increasingly large and complex collec-
tions of machines, and the business of designing and building such an ar-
ray of machines for general use was dominated, not to say monopolized, by
one firm. IBM gave away its software. To be sure, it owned the programs
its employees wrote, and it copyrighted the source code. But it also dis-
tributed the programs—including the source code—to its customers at no
additional charge, and encouraged them to make and share improvements
or adaptations of the programs thus distributed. For a dominant hardware
manufacturer, this strategy made sense: better programs sold more com-
puters, which is where the profitability of the business rested.

Computers, in this period, tended to aggregate within particular organi-
zations, but not to communicate broadly with one another. The software
needed to operate was distributed not through a network, but on spools of
magnetic tape. This distribution system tended to centralize software de-
velopment, so that while IBM customers were free to make modifications
and improvements to programs, those modifications were shared in the
first instance with IBM, which then considered whether and in what way
to incorporate those changes in the centrally-developed and distributed
version of the software. Thus in two important senses the best computer
software in the world was free: it cost nothing to acquire, and the terms
on which it was furnished both allowed and encouraged experimentation,
change, and improvement.13 That the software in question was IBM’s prop-
erty under prevailing copyright law certainly established some theoretical
limits on users’ ability to distribute their improvements or adaptations to
others, but in practice mainframe software was cooperatively developed
by the dominant hardware manufacturer and its technically-sophisticated
users, employing the manufacturer’s distribution resources to propagate
the resulting improvements through the user community. The right to ex-
clude others, one of the most important “sticks in the bundle” of property

13This description elides some details. By the mid-1970s IBM had acquired meaning-
ful competition in the mainframe computer business, while the large-scale antitrust action
brought against it by the US government prompted the decision to “unbundle,” or charge
separately, for software. In this less important sense, software ceased to be free. But—
without entering into the now-dead but once-heated controversy over IBM’s software pric-
ing policies—the unbundling revolution had less effect on the social practices of software
manufacture than might be supposed. As a fellow responsible for technical improvement
of one programming language product at IBM from 1979 to 1984, for example, I was able
to treat the product as “almost free,” that is, to discuss with users the changes they had
proposed or made in the programs, and to engage with them in cooperative development
of the product for the benefit of all users.



Moglen / Anarchism Triumphant 12

rights (in an image beloved of the United States Supreme Court), was prac-
tically unimportant, or even undesirable, at the heart of the software busi-
ness.14

After 1980, everything was different. The world of mainframe hardware
gave way within ten years to the world of the commodity PC. And, as a
contingency of the industry’s development, the single most important ele-
ment of the software running on that commodity PC, the operating system,
became the sole significant product of a company that made no hardware.
High-quality basic software ceased to be part of the product-differentiation
strategy of hardware manufacturers. Instead, a firm with an overwhelm-
ing share of the market, and with the near-monopolist’s ordinary absence
of interest in fostering diversity, set the practices of the software indus-
try. In such a context, the right to exclude others from participation in the
product’s formation became profoundly important. Microsoft’s power in
the market rested entirely on its ownership of the Windows source code.

To Microsoft, others’ making of “derivative works,” otherwise known
as repairs and improvements, threatened the central asset of the business.
Indeed, as subsequent judicial proceedings have tended to establish, Mi-
crosoft’s strategy as a business was to find innovative ideas elsewhere in
the software marketplace, buy them up and either suppress them or incor-
porate them in its proprietary product. The maintenance of control over the
basic operation of computers manufactured, sold, possessed, and used by
others represented profound and profitable leverage over the development
of the culture;15 the right to exclude returned to center stage in the concept
of software as property.

The result, so far as the quality of software was concerned, was disas-
trous. The monopoly was a wealthy and powerful corporation that em-
ployed a large number of programmers, but it could not possibly afford
the number of testers, designers, and developers required to produce flex-

14This description is highly compressed, and will seem both overly simplified and un-
duly rosy to those who also worked in the industry during this period of its development.
Copyright protection of computer software was a controversial subject in the 1970s, lead-
ing to the famous CONTU commission and its mildly pro-copyright recommendations of
1979. And IBM seemed far less cooperative to its users at the time than this sketch makes
out. But the most important element is the contrast with the world created by the PC, the
Internet, and the dominance of Microsoft, with the resulting impetus for the free software
movement, and I am here concentrating on the features that express that contrast.

15I discuss the importance of PC software in this context, the evolution of “the market for
eyeballs” and “the sponsored life” in other chapters of my forthcoming book, The Invisible
Barbecue, of which this essay forms a part.



Moglen / Anarchism Triumphant 13

ible, robust and technically-innovative software appropriate to the vast ar-
ray of conditions under which increasingly ubiquitous personal comput-
ers operated. Its fundamental marketing strategy involved designing its
product for the least technically-sophisticated users, and using “fear, un-
certainty, and doubt” (known within Microsoft as “FUD”) to drive sophis-
ticated users away from potential competitors, whose long-term surviv-
ability in the face of Microsoft’s market power was always in question.

Without the constant interaction between users able to repair and im-
prove and the operating system’s manufacturer, the inevitable deteriora-
tion of quality could not be arrested. But because the personal computer
revolution expanded the number of users exponentially, almost everyone
who came in contact with the resulting systems had nothing against which
to compare them. Unaware of the standards of stability, reliability, main-
tainability and effectiveness that had previously been established in the
mainframe world, users of personal computers could hardly be expected
to understand how badly, in relative terms, the monopoly’s software func-
tioned. As the power and capacity of personal computers expanded rapidly,
the defects of the software were rendered less obvious amidst the general
increase of productivity. Ordinary users, more than half afraid of the tech-
nology they almost completely did not understand, actually welcomed the
defectiveness of the software. In an economy undergoing mysterious trans-
formations, with the concomitant destabilization of millions of careers, it
was tranquilizing, in a perverse way, that no personal computer seemed
to be able to run for more than a few consecutive hours without crashing.
Although it was frustrating to lose work in progress each time an unneces-
sary failure occurred, the evident fallibility of computers was intrinsically
reassuring.16

None of this was necessary. The low quality of personal computer soft-
ware could have been reversed by including users directly in the inherently
evolutionary process of software design and implementation. A Lamarck-
ian mode, in which improvements could be made anywhere, by anyone,
and inherited by everyone else, would have wiped out the deficit, restor-
ing to the world of the PC the stability and reliability of the software made
in the quasi-propertarian environment of the mainframe era. But the Mi-
crosoft business model precluded Lamarckian inheritance of software im-
provements. Copyright doctrine, in general and as it applies to software in

16This same pattern of ambivalence, in which bad programming leading to widespread
instability in the new technology is simultaneously frightening and reassuring to technical
incompetents, can be seen also in the primarily-American phenomenon of Y2K hysteria.



Moglen / Anarchism Triumphant 14

particular, biases the world towards creationism; in this instance, the prob-
lem is that BillG the Creator was far from infallible, and in fact he wasn’t
even trying.

To make the irony more severe, the growth of the network rendered the
non-propertarian alternative even more practical. What scholarly and pop-
ular writing alike denominate as a thing (“the Internet”) is actually the
name of a social condition: the fact that everyone in the network society is
connected directly, without intermediation, to everyone else.17 The global
interconnection of networks eliminated the bottleneck that had required
a centralized software manufacturer to rationalize and distribute the out-
come of individual innovation in the era of the mainframe.

And so, in one of history’s little ironies, the global triumph of bad soft-
ware in the age of the PC was reversed by a surprising combination of
forces: the social transformation initiated by the network, a long-discarded
European theory of political economy, and a small band of programmers
throughout the world mobilized by a single simple idea.

B Software Wants to Be Free; or, How We Stopped Worrying and
Learned to Love the Bomb

Long before the network of networks was a practical reality, even before
it was an aspiration, there was a desire for computers to operate on the
basis of software freely available to everyone. This began as a reaction
against propertarian software in the mainframe era, and requires another
brief historical digression.

Even though IBM was the largest seller of general purpose computers in
the mainframe era, it was not the largest designer and builder of such hard-
ware. The telephone monopoly, American Telephone & Telegraph, was in
fact larger than IBM, but it consumed its products internally. And at the fa-
mous Bell Labs research arm of the telephone monopoly, in the late 1960s,
the developments in computer languages previously described gave birth
to an operating system called Unix.

The idea of Unix was to create a single, scalable operating system to ex-
ist on all the computers, from small to large, that the telephone monopoly
made for itself. To achieve this goal meant writing an operating system
not in machine language, nor in an assembler whose linguistic form was

17The critical implications of this simple observation about our metaphors are worked
out in “How Not to Think about ’The Internet’,” in The Invisible Barbecue, forthcoming.



Moglen / Anarchism Triumphant 15

integral to a particular hardware design, but in a more expressive and gen-
eralized language. The one chosen was also a Bell Labs invention, called
“C.”18 The C language became common, even dominant, for many kinds
of programming tasks, and by the late 1970s the Unix operating system
written in that language had been transferred (or “ported,” in professional
jargon) to computers made by many manufacturers and of many designs.

AT&T distributed Unix widely, and because of the very design of the op-
erating system, it had to make that distribution in C source code. But AT&T
retained ownership of the source code and compelled users to purchase li-
censes that prohibited redistribution and the making of derivative works.
Large computing centers, whether industrial or academic, could afford to
purchase such licenses, but individuals could not, while the license restric-
tions prevented the community of programmers who used Unix from im-
proving it in an evolutionary rather than episodic fashion. And as pro-
grammers throughout the world began to aspire to and even expect a per-
sonal computer revolution, the “unfree” status of Unix became a source of
concern.

Between 1981 and 1984, one man envisioned a crusade to change the
situation. Richard M. Stallman, then an employee of MIT’s Artificial Intel-
ligence Laboratory, conceived the project of independent, collaborative re-
design and implementation of an operating system that would be true free
software. In Stallman’s phrase, free software would be a matter of freedom,
not of price. Anyone could freely modify and redistribute such software,
or sell it, subject only to the restriction that he not try to reduce the rights of
others to whom he passed it along. In this way free software could become
a self-organizing project, in which no innovation would be lost through
proprietary exercises of rights. The system, Stallman decided, would be
called GNU, which stood (in an initial example of a taste for recursive
acronyms that has characterized free software ever since), for “GNU’s Not
Unix.” Despite misgivings about the fundamental design of Unix, as well
as its terms of distribution, GNU was intended to benefit from the wide if
unfree source distribution of Unix. Stallman began Project GNU by writing
components of the eventual system that were also designed to work with-
out modification on existing Unix systems. Development of the GNU tools
could thus proceed directly in the environment of university and other ad-
vanced computing centers around the world.

18Technical readers will again observe that this compresses developments occurring from
1969 through 1973.



Moglen / Anarchism Triumphant 16

The scale of such a project was immense. Somehow, volunteer program-
mers had to be found, organized, and set to work building all the tools
that would be necessary for the ultimate construction. Stallman himself
was the primary author of several fundamental tools. Others were con-
tributed by small or large teams of programmers elsewhere, and assigned
to Stallman’s project or distributed directly. A few locations around the de-
veloping network became archives for the source code of these GNU com-
ponents, and throughout the 1980s the GNU tools gained recognition and
acceptance by Unix users throughout the world. The stability, reliability,
and maintainability of the GNU tools became a by-word, while Stallman’s
profound abilities as a designer continued to outpace, and provide goals
for, the evolving process. The award to Stallman of a MacArthur Fellow-
ship in 1990 was an appropriate recognition of his conceptual and technical
innovations and their social consequences.

Project GNU, and the Free Software Foundation to which it gave birth
in 1985, were not the only source of free software ideas. Several forms of
copyright license designed to foster free or partially free software began
to develop in the academic community, mostly around the Unix environ-
ment. The University of California Berkeley began the design and imple-
mentation of another version of Unix for free distribution in the academic
community. BSD Unix, as it came to be known, also treated AT&T’s Unix as
a design standard. The code was broadly released and constituted a reser-
voir of tools and techniques, but its license terms limited the range of its ap-
plication, while the elimination of hardware-specific proprietary code from
the distribution meant that no one could actually build a working operat-
ing system for any particular computer from BSD. Other university-based
work also eventuated in quasi-free software; the graphical user interface
(or GUI) for Unix systems called X Windows, for example, was created at
MIT and distributed with source code on terms permitting free modifica-
tion. And in 1989-1990, an undergraduate computer science student at the
University of Helsinki, Linus Torvalds, began the project that completed
the circuit and fully energized the free software vision.

What Torvalds did was to begin adapting a computer science teaching
tool for real life use. Andrew Tannenbaum’s MINIX kernel,19 was a staple

19Operating systems, even Windows (which hides the fact from its users as thoroughly
as possible), are actually collections of components, rather than undivided unities. Most of
what an operating system does (manage file systems, control process execution, etc.) can be
abstracted from the actual details of the computer hardware on which the operating system
runs. Only a small inner core of the system must actually deal with the eccentric peculiar-



Moglen / Anarchism Triumphant 17

of Operating Systems courses, providing an example of basic solutions to
basic problems. Slowly, and at first without recognizing the intention, Li-
nus began turning the MINIX kernel into an actual kernel for Unix on the
Intel x86 processors, the engines that run the world’s commodity PCs. As
Linus began developing this kernel, which he named Linux, he realized
that the best way to make his project work would be to adjust his design
decisions so that the existing GNU components would be compatible with
his kernel.

The result of Torvalds’ work was the release on the net in 1991 of a
sketchy working model of a free software kernel for a Unix-like operating
system for PCs, fully compatible with and designed convergently with the
large and high-quality suite of system components created by Stallman’s
Project GNU and distributed by the Free Software Foundation. Because
Torvalds chose to release the Linux kernel under the Free Software Foun-
dation’s General Public License, of which more below, the hundreds and
eventually thousands of programmers around the world who chose to con-
tribute their effort towards the further development of the kernel could
be sure that their efforts would result in permanently free software that
no one could turn into a proprietary product. Everyone knew that every-
one else would be able to test, improve, and redistribute their improve-
ments. Torvalds accepted contributions freely, and with a genially effective
style maintained overall direction without dampening enthusiasm. The
development of the Linux kernel proved that the Internet made it possible
to aggregate collections of programmers far larger than any commercial
manufacturer could afford, joined almost non-hierarchically in a develop-
ment project ultimately involving more than one million lines of computer
code—a scale of collaboration among geographically dispersed unpaid vol-
unteers previously unimaginable in human history.20

By 1994, Linux had reached version 1.0, representing a usable produc-
tion kernel. Level 2.0 was reached in 1996, and by 1998, with the kernel
at 2.2.0 and available not only for x86 machines but for a variety of other
machine architectures, GNU/Linux—the combination of the Linux kernel

ities of particular hardware. Once the operating system is written in a general language
such as C, only that inner core, known in the trade as the kernel, will be highly specific to a
particular computer architecture.

20A careful and creative analysis of how Torvalds made this process work, and what it
implies for the social practices of creating software, was provided by Eric S. Raymond in
his seminal 1997 paper, The Cathedral and the Bazaar,

http://www.tuxedo.org/˜esr/writings/cathedral-bazaar/
which itself played a significant role in the expansion of the free software idea.



Moglen / Anarchism Triumphant 18

and the much larger body of Project GNU components—and Windows NT
were the only two operating systems in the world gaining market share.
A Microsoft internal assessment of the situation leaked in October 1998
and subsequently acknowledged by the company as genuine concluded
that “Linux represents a best-of-breed UNIX, that is trusted in mission crit-
ical applications, and—due to it’s [sic] open source code—has a long term
credibility which exceeds many other competitive OS’s.”21 GNU/Linux
systems are now used throughout the world, operating everything from
web servers at major electronic commerce sites to “ad-hoc supercomputer”
clusters to the network infrastructure of money-center banks. GNU/Linux
is found on the space shuttle, and running behind-the-scenes computers at
(yes) Microsoft. Industry evaluations of the comparative reliability of Unix
systems have repeatedly shown that Linux is far and away the most sta-
ble and reliable Unix kernel, with a reliability exceeded only by the GNU
tools themselves. GNU/Linux not only out-performs commercial propri-
etary Unix versions for PCs in benchmarks, but is renowned for its ability
to run, undisturbed and uncomplaining, for months on end in high-volume
high-stress environments without crashing.

Other components of the free software movement have been equally suc-
cessful. Apache, far and away the world’s leading web server program, is
free software, as is Perl, the programming language which is the lingua
franca for the programmers who build sophisticated websites. Netscape
Communications now distributes its Netscape Communicator 5.0 browser
as free software, under a close variant of the Free Software Foundation’s
General Public License. Major PC manufacturers, including IBM, have an-
nounced plans or are already distributing GNU/Linux as a customer op-
tion on their top-of-the-line PCs intended for use as web- and fileservers.
Samba, a program that allows GNU/Linux computers to act as Windows
NT fileservers, is used worldwide as an alternative to Windows NT Server,
and provides effective low-end competition to Microsoft in its own home
market. By the standards of software quality that have been recognized in
the industry for decades—and whose continuing relevance will be clear to
you the next time your Windows PC crashes—the news at century’s end
is unambiguous. The world’s most profitable and powerful corporation
comes in a distant second, having excluded all but the real victor from the
race. Propertarianism joined to capitalist vigor destroyed meaningful com-

21This is a quotation from what is known in the trade as the “Halloween memo,”
which can be found, as annotated by Eric Raymond, to whom it was leaked, at
http://www.opensource.org/halloween1.html.



Moglen / Anarchism Triumphant 19

mercial competition, but when it came to making good software, anarchism
won.

III Anarchism as a Mode of Production

It’s a pretty story, and if only the IPdroid and the econodwarf hadn’t
been blinded by theory, they’d have seen it coming. But though some
of us had been working for it and predicting it for years, the theoreti-
cal consequences are so subversive for the thoughtways that maintain our
dwarves and droids in comfort that they can hardly be blamed for refusing
to see. The facts proved that something was wrong with the “incentives”
metaphor that underprops conventional intellectual property reasoning.22

But they did more. They provided an initial glimpse into the future of hu-
man creativity in a world of global interconnection, and it’s not a world
made for dwarves and droids.

My argument, before we paused for refreshment in the real world, can
be summarized this way: Software—whether executable programs, mu-
sic, visual art, liturgy, weaponry, or what have you—consists of bitstreams,
which although essentially indistinguishable are treated by a confusing
multiplicity of legal categories. This multiplicity is unstable in the long
term for reasons integral to the legal process. The unstable diversity of
rules is caused by the need to distinguish among kinds of property inter-
ests in bitstreams. This need is primarily felt by those who stand to profit
from the socially acceptable forms of monopoly created by treating ideas
as property. Those of us who are worried about the social inequity and cul-
tural hegemony created by this intellectually unsatisfying and morally re-
pugnant regime are shouted down. Those doing the shouting, the dwarves
and the droids, believe that these property rules are necessary not from
any overt yearning for life in Murdochworld—though a little luxurious
co-optation is always welcome—but because the metaphor of incentives,
which they take to be not just an image but an argument, proves that these
rules—despite their lamentable consequences—are necessary if we are to
make good software. The only way to continue to believe this is to ignore
the facts. At the center of the digital revolution, with the executable bit-

22As recently as early 1994 a talented and technically competent (though Windows-using)
law and economics scholar at a major US law school confidently informed me that free
software couldn’t possibly exist, because no one would have any incentive to make really
sophisticated programs requiring substantial investment of effort only to give them away.



Moglen / Anarchism Triumphant 20

streams that make everything else possible, propertarian regimes not only
do not make things better, they can make things radically worse. Property
concepts, whatever else may be wrong with them, do not enable and have
in fact retarded progress.

But what is this mysterious alternative? Free software exists, but what
are its mechanisms, and how does it generalize towards a non-propertarian
theory of the digital society?

A The Legal Theory of Free Software

There is a myth, like most myths partially founded on reality, that computer
programmers are all libertarians. Right-wing ones are capitalists, cleave to
their stock options, and disdain taxes, unions, and civil rights laws; left-
wing ones hate the market and all government, believe in strong encryption
no matter how much nuclear terrorism it may cause,23 and dislike Bill Gates
because he’s rich. There is doubtless a foundation for this belief. But the
most significant difference between political thought inside the digirati and
outside it is that in the network society, anarchism (or more properly, anti-
possessive individualism) is a viable political philosophy.

The center of the free software movement’s success, and the greatest
achievement of Richard Stallman, is not a piece of computer code. The suc-
cess of free software, including the overwhelming success of GNU/Linux,
results from the ability to harness extraordinary quantities of high-quality
effort for projects of immense size and profound complexity. And this abil-
ity in turn results from the legal context in which the labor is mobilized. As
a visionary designer Richard Stallman created more than Emacs, GDB, or
GNU. He created the General Public License.

The GPL,24 also known as the copyleft, uses copyright, to paraphrase
Toby Milsom, to counterfeit the phenomena of anarchism. As the license
preamble expresses it:

When we speak of free software, we are referring to free-
dom, not price. Our General Public Licenses are designed to

23This question too deserves special scrutiny, encrusted as it is with special pleading on
the state-power side. See my brief essay “So Much for Savages: Navajo 1, Government 0 in
Final Moments of Play,”

http://emoglen.law.columbia.edu/my pubs/yu-encrypt.html
24See GNU General Public License, Version 2, June 1991,

http://www.fsf.org/copyleft/gpl.txt



Moglen / Anarchism Triumphant 21

make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you re-
ceive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that for-
bid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a program,
whether gratis or for a fee, you must give the recipients all the
rights that you have. You must make sure that they, too, receive
or can get the source code. And you must show them these
terms so they know their rights.

Many variants of this basic free software idea have been expressed in
licenses of various kinds, as I have already indicated. The GPL is differ-
ent from the other ways of expressing these values in one crucial respect.
Section 2 of the license provides in pertinent part:

You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and
copy and distribute such modifications or work ..., provided
that you also meet all of these conditions:

...
b) You must cause any work that you distribute or publish,

that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

Section 2(b) of the GPL is sometimes called “restrictive,” but its intention
is liberating. It creates a commons, to which anyone may add but from
which no one may subtract. Because of §2(b), each contributor to a GPL’d
project is assured that she, and all other users, will be able to run, mod-
ify and redistribute the program indefinitely, that source code will always
be available, and that, unlike commercial software, its longevity cannot be
limited by the contingencies of the marketplace or the decisions of future
developers. This “inheritance” of the GPL has sometimes been criticized as



Moglen / Anarchism Triumphant 22

an example of the free software movement’s anti-commercial bias. Noth-
ing could be further from the truth. The effect of §2(b) is to make com-
mercial distributors of free software better competitors against proprietary
software businesses. For confirmation of this point, one can do no better
than to ask the proprietary competitors. As the author of the Microsoft
“Halloween” memorandum, Vinod Vallopillil, put it:

The GPL and its aversion to code forking reassures customers
that they aren’t riding an evolutionary ‘dead-end’ by subscrib-
ing to a particular commercial version of Linux.

The ”evolutionary dead-end” is the core of the software FUD
argument.25

Translated out of Microspeak, this means that the strategy by which the
dominant proprietary manufacturer drives customers away from competi-
tors—by sowing fear, uncertainty and doubt about other software’s long-
term viability—is ineffective with respect to GPL’d programs. Users of
GPL’d code, including those who purchase software and systems from a
commercial reseller, know that future improvements and repairs will be
accessible from the commons, and need not fear either the disappearance
of their supplier or that someone will use a particularly attractive improve-
ment or a desperately necessary repair as leverage for “taking the program
private.”

This use of intellectual property rules to create a commons in cyberspace
is the central institutional structure enabling the anarchist triumph. Ensur-
ing free access and enabling modification at each stage in the process means
that the evolution of software occurs in the fast Lamarckian mode: each fa-
vorable acquired characteristic of others’ work can be directly inherited.
Hence the speed with which the Linux kernel, for example, outgrew all of
its proprietary predecessors. Because defection is impossible, free riders
are welcome, which resolves one of the central puzzles of collective action
in a propertarian social system.

Non-propertarian production is also directly responsible for the famous
stability and reliability of free software, which arises from what Eric Ray-
mond calls “Linus’ law”: With enough eyeballs, all bugs are shallow. In
practical terms, access to source code means that if I have a problem I can

25V. Vallopillil, Open Source Software: A (New?) Development Methodology,
http://www.opensource.org/halloween1.html



Moglen / Anarchism Triumphant 23

fix it. Because I can fix it, I almost never have to, because someone else has
almost always seen it and fixed it first.

For the free software community, commitment to anarchist production
may be a moral imperative; as Richard Stallman wrote, it’s about freedom,
not about price. Or it may be a matter of utility, seeking to produce better
software than propertarian modes of work will allow. From the droid point
of view, the copyleft represents the perversion of theory, but better than any
other proposal over the past decades it resolves the problems of applying
copyright to the inextricably merged functional and expressive features of
computer programs. That it produces better software than the alternative
does not imply that traditional copyright principles should now be prohib-
ited to those who want to own and market inferior software products, or
(more charitably) whose products are too narrow in appeal for communal
production. But our story should serve as a warning to droids: The world
of the future will bear little relation to the world of the past. The rules
are now being bent in two directions. The corporate owners of “cultural
icons” and other assets who seek ever-longer terms for corporate authors,
converting the “limited Time” of Article I, §8 into a freehold have naturally
been whistling music to the android ear.26 After all, who bought the droids
their concert tickets? But as the propertarian position seeks to embed itself
ever more strongly, in a conception of copyright liberated from the minor
annoyances of limited terms and fair use, at the very center of our “cultural
software” system, the anarchist counter-strike has begun. Worse is yet to
befall the droids, as we shall see. But first, we must pay our final devoirs to
the dwarves.

B Because It’s There: Faraday’s Magnet and Human Creativity

After all, they deserve an answer. Why do people make free software
if they don’t get to profit? Two answers have usually been given. One is
half-right and the other is wrong, but both are insufficiently simple.

The wrong answer is embedded in numerous references to “the hacker
gift-exchange culture.” This use of ethnographic jargon wandered into the
field some years ago and became rapidly, if misleadingly, ubiquitous. It
reminds us only that the economeretricians have so corrupted our thought

26The looming expiration of Mickey Mouse’s ownership by Disney requires, from the
point of view of that wealthy “campaign contributor,” for example, an alteration of the
general copyright law of the United States. See “Not Making it Any More? Vaporizing the
Public Domain,” in The Invisible Barbecue, forthcoming.



Moglen / Anarchism Triumphant 24

processes that any form of non-market economic behavior seems equal to
every other kind. But gift-exchange, like market barter, is a propertarian
institution. Reciprocity is central to these symbolic enactments of mutual
dependence, and if either the yams or the fish are short-weighted, trouble
results. Free software, at the risk of repetition, is a commons: no reciprocity
ritual is enacted there. A few people give away code that others sell, use,
change, or borrow wholesale to lift out parts for something else. Notwith-
standing the very large number of people (tens of thousands, at most) who
have contributed to GNU/Linux, this is orders of magnitude less than the
number of users who make no contribution whatever.27

A part of the right answer is suggested by the claim that free software
is made by those who seek reputational compensation for their activity.
Famous Linux hackers, the theory is, are known all over the planet as pro-
gramming deities. From this they derive either enhanced self-esteem or
indirect material advancement.28 But the programming deities, much as
they have contributed to free software, have not done the bulk of the work.
Reputations, as Linus Torvalds himself has often pointed out, are made
by willingly acknowledging that it was all done by someone else. And, as
many observers have noted, the free software movement has also produced
superlative documentation. Documentation-writing is not what hackers do
to attain cool, and much of the documentation has been written by people
who didn’t write the code. Nor must we limit the indirect material advan-
tages of authorship to increases in reputational capital. Most free software
authors I know have day jobs in the technology industries, and the skills
they hone in the more creative work they do outside the market no doubt
sometimes measurably enhance their value within it. And as the free soft-
ware products gained critical mass and became the basis of a whole new

27A recent industry estimate puts the number of Linux systems worldwide at 7.5 million.
See Josh McHugh, Linux: The Making of a Global Hack, Forbes, August 10, 1998.

http://www.forbes.com/forbes/98/0810/6203094s1.htm
Because the software is freely obtainable throughout the net, there is no simple way to
assess actual usage.

28Eric Raymond is a partisan of the “ego boost” theory, to which he adds another
faux-ethnographic comparison, of free software composition to the Kwakiutl potlatch. See
Eric S. Raymond, Homesteading the Noosphere.

http://www.tuxedo.org/˜esr/writings/homesteading .
But the potlatch, certainly a form of status competition, is unlike free software for two
fundamental reasons: it is essentially hierarchical, which free software is not, and, as we
have known since Thorstein Veblen first called attention to its significance, it is a form
of conspicuous waste. See Thorstein Veblen, The Theory of the Leisure Class (New York:
Viking, 1967), (1st ed. 1899), 75. These are precisely the grounds which distinguish the
anti-hierarchical and utilitiarian free software culture from its propertarian counterparts.



Moglen / Anarchism Triumphant 25

set of business models built around commercial distribution of that which
people can also get for nothing, an increasing number of people are specifi-
cally employed to write free software. But in order to be employable in the
field, they must already have established themselves there. Plainly, then,
this motive is present, but it isn’t the whole explanation.

Indeed, the rest of the answer is just too simple to have received its due.
The best way to understand is to follow the brief and otherwise unsung
career of an initially-grudging free software author. Microsoft’s Vinod Val-
lopillil, in the course of writing the competitive analysis of Linux that was
leaked as the second of the famous “Halloween memoranda,” bought and
installed a Linux system on one of his office computers. He had trouble
because the (commercial) Linux distribution he installed did not contain a
daemon to handle the DHCP protocol for assignment of dynamic IP ad-
dresses. The result was important enough for us to risk another prolonged
exposure to the Microsoft Writing Style:

A small number of web sites and FAQs later, I found an FTP
site with a Linux DHCP client. The DHCP client was developed
by an engineer employed by Fore Systems (as evidenced by his
email address; I believe, however, that it was developed in his
own free time). A second set of documentation/manuals was
written for the DHCP client by a hacker in Hungary which pro-
vided relatively simple instructions on how to install/load the
client.

I downloaded & uncompressed the client and typed two
simple commands:

Make - compiles the client binaries
Make Install -installed the binaries as a Linux Daemon
Typing ”DHCPCD” (for DHCP Client Daemon) on the com-

mand line triggered the DHCP discovery process and voila, I
had IP networking running.

Since I had just downloaded the DHCP client code, on an
impulse I played around a bit. Although the client wasn’t as
extensible as the DHCP client we are shipping in NT5 (for ex-
ample, it won’t query for arbitrary options & store results), it
was obvious how I could write the additional code to imple-
ment this functionality. The full client consisted of about 2600
lines of code.

One example of esoteric, extended functionality that was
clearly patched in by a third party was a set of routines to that



Moglen / Anarchism Triumphant 26

would pad the DHCP request with host-specific strings required
by Cable Modem / ADSL sites.

A few other steps were required to configure the DHCP client
to auto-start and auto-configure my Ethernet interface on boot
but these were documented in the client code and in the DHCP
documentation from the Hungarian developer.

I’m a poorly skilled UNIX programmer but it was imme-
diately obvious to me how to incrementally extend the DHCP
client code (the feeling was exhilarating and addictive).

Additionally, due directly to GPL + having the full develop-
ment environment in front of me, I was in a position where I
could write up my changes and email them out within a couple
of hours (in contrast to how things like this would get done in
NT). Engaging in that process would have prepared me for a
larger, more ambitious Linux project in the future.29

“The feeling was exhilarating and addictive.” Stop the presses: Microsoft
experimentally verifies Moglen’s Metaphorical Corollary to Faraday’s Law.
Wrap the Internet around every brain on the planet and spin the planet.
Software flows in the wires. It’s an emergent property of human minds to
create. “Due directly to the GPL,” as Vallopillil rightly pointed out, free
software made available to him an exhilarating increase in his own creativ-
ity, of a kind not achievable in his day job working for the Greatest Pro-
gramming Company on Earth. If only he had emailed that first addictive
fix, who knows where he’d be now?

So, in the end, my dwarvish friends, it’s just a human thing. Rather like
why Figaro sings, why Mozart wrote the music for him to sing to, and
why we all make up new words: Because we can. Homo ludens, meet
Homo faber. The social condition of global interconnection that we call the
Internet makes it possible for all of us to be creative in new and previously
undreamed-of ways. Unless we allow “ownership” to interfere. Repeat
after me, ye dwarves and men: Resist the resistance!

29Vinod Vallopillil, Linux OS Competitive Analysis (Halloween II).
http://www.opensource.org/halloween2.html

Note Vallopillil’s surprise that a program written in California had been subsequently doc-
umented by a programmer in Hungary.



Moglen / Anarchism Triumphant 27

IV Their Lordships Die in the Dark?

For the IPdroid, fresh off the plane from a week at Bellagio paid for by
Dreamworks SKG, it’s enough to cause indigestion.

Unlock the possibilities of human creativity by connecting everyone to
everyone else? Get the ownership system out of the way so that we can
all add our voices to the choir, even if that means pasting our singing on
top of the Mormon Tabernacle and sending the output to a friend? No one
sitting slack-jawed in front of a televised mixture of violence and imminent
copulation carefully devised to heighten the young male eyeball’s interest
in a beer commercial? What will become of civilization? Or at least of
copyrights teachers?

But perhaps this is premature. I’ve only been talking about software.
Real software, the old kind, that runs computers. Not like the software that
runs DVD players, or the kind made by the Grateful Dead. “Oh yes, the
Grateful Dead. Something strange about them, wasn’t there? Didn’t pro-
hibit recording at their concerts. Didn’t mind if their fans rather riled the
recording industry. Seem to have done all right, though, you gotta admit.
Senator Patrick Leahy, isn’t he a former Deadhead? I wonder if he’ll vote to
extend corporate authorship terms to 125 years, so that Disney doesn’t lose
The Mouse in 2004. And those DVD players—they’re computers, aren’t
they?”

In the digital society, it’s all connected. We can’t depend for the long
run on distinguishing one bitstream from another in order to figure out
which rules apply. What happened to software is already happening to
music. Their recording industry lordships are now scrambling wildly to
retain control over distribution, as both musicians and listeners realize that
the middlepeople are no longer necessary. The Great Potemkin Village of
1999, the so-called Secure Digital Music Initiative, will have collapsed long
before the first Internet President gets inaugurated, for simple technical rea-
sons as obvious to those who know as the ones that dictated the triumph of
free software.30 The anarchist revolution in music is different from the one
in software tout court, but here too—as any teenager with an MP3 collec-
tion of self-released music from unsigned artists can tell you—theory has
been killed off by the facts. Whether you are Mick Jagger, or a great na-
tional artist from the third world looking for a global audience, or a garret-

30See “They’re Playing Our Song: The Day the Music Industry Died,” in The Invisible
Barbecue, forthcoming.



Moglen / Anarchism Triumphant 28

dweller reinventing music, the recording industry will soon have nothing
to offer you that you can’t get better for free. And music doesn’t sound
worse when distributed for free, pay what you want directly to the artist,
and don’t pay anything if you don’t want to. Give it to your friends; they
might like it.

What happened to music is also happening to news. The wire services,
as any US law student learns even before taking the near-obligatory course
in Copyright for Droids, have a protectible property interest in their expres-
sion of the news, even if not in the facts the news reports.31 So why are they
now giving all their output away? Because in the world of the net, most
news is commodity news. And the original advantage of the news gath-
erers, that they were internally connected in ways others were not when
communications were expensive, is gone. Now what matters is collecting
eyeballs to deliver to advertisers. It isn’t the wire services that have the
advantage in covering Kosovo, that’s for sure. Much less those paragons
of “intellectual” property, their television lordships. They, with their over-
paid pretty people and their massive technical infrastructure, are about the
only organizations in the world that can’t afford to be everywhere all the
time. And then they have to limit themselves to ninety seconds a story, or
the eyeball hunters will go somewhere else. So who makes better news, the
propertarians or the anarchists? We shall soon see.

Oscar Wilde says somewhere that the problem with socialism is that it
takes up too many evenings. The problems with anarchism as a social sys-
tem are also about transaction costs. But the digital revolution alters two
aspects of political economy that have been otherwise invariant throughout
human history. All software has zero marginal cost in the world of the net,
while the costs of social coordination have been so far reduced as to permit
the rapid formation and dissolution of large-scale and highly diverse so-
cial groupings entirely without geographic limitation.32 Such fundamental
change in the material circumstances of life necessarily produces equally
fundamental changes in culture. Think not? Tell it to the Iroquois. And
of course such profound shifts in culture are threats to existing power rela-
tions. Think not? Ask the Chinese Communist Party. Or wait twenty-five
years and see if you can find them for purposes of making the inquiry.

31International News Service v. Associated Press, 248 U.S. 215 (1918). With regard to the
actual terse, purely functional expressions of breaking news actually at stake in the jostling
among wire services, this was always a distinction only a droid could love.

32See “No Prodigal Son: The Political Theory of Universal Interconnection,” in The Invis-
ible Barbecue, forthcoming.



Moglen / Anarchism Triumphant 29

In this context, the obsolescence of the IPdroid is neither unforseeable
nor tragic. Indeed it may find itself clanking off into the desert, still lu-
cidly explaining to an imaginary room the profitably complicated rules for
a world that no longer exists. But at least it will have familiar company,
recognizable from all those glittering parties in Davos, Hollywood, and
Brussels. Our Media Lords are now at handigrips with fate, however much
they may feel that the Force is with them. The rules about bitstreams are
now of dubious utility for maintaining power by co-opting human creativ-
ity. Seen clearly in the light of day, these Emperors have even fewer clothes
than the models they use to grab our eyeballs. Unless supported by user-
disabling technology, a culture of pervasive surveillance that permits every
reader of every “property” to be logged and charged, and a smokescreen
of droid-breath assuring each and every young person that human creativ-
ity would vanish without the benevolent aristocracy of BillG the Creator,
Lord Murdoch of Everywhere, the Spielmeister and the Lord High Mouse,
their reign is nearly done. But what’s at stake is the control of the scarcest
resource of all: our attention. Conscripting that makes all the money in the
world in the digital economy, and the current lords of the earth will fight
for it. Leagued against them are only the anarchists: nobodies, hippies,
hobbyists, lovers, and artists. The resulting unequal contest is the great po-
litical and legal issue of our time. Aristocracy looks hard to beat, but that’s
how it looked in 1788 and 1913 too. It is, as Chou En-Lai said about the
meaning of the French Revolution, too soon to tell.



Moglen / Anarchism Triumphant 30

References

Balkin, J. M., Cultural Software: a Theory of Ideology (New Haven: Yale Uni-
versity Press, 1998).

Berlin, Isaiah, The Hedgehog and the Fox; an Essay on Tolstoy’s View of History
(New York: Simon and Schuster, 1953).

Maine, Henry Sumner, Ancient Law: Its Connection with the Early History
of Society, and its Relation to Modern Ideas, 1st edn. (London: J. Murray,
1861).

Milsom, S. F. C., Historical Foundations of the Common Law, 2nd edn. (Lon-
don: Butterworths, 1981).

Veblen, Thorstein, The Theory of the Leisure Class (New York: Viking, 1967).


	Anarchism Triumphant: Free Software and the Death of Copyright
	28 Jun 1999 Eben Moglen, Columbia University
	I Software as Property: The Theoretical Paradox
	II Software as Property: The Practical Problem
	A How We Created the Microbrain Mess
	B Software Wants to Be Free; or, How We Stopped Worrying and Learned to Love the Bomb

	III Anarchism as a Mode of Production
	A The Legal Theory of Free Software
	B Because It’s There: Faraday’s Magnet and Human Creativity

	IV Their Lordships Die in the Dark?
	References

	 
	Columbia University Title Page

