Concept and Applications of Data Mining

Week 1

Topics

- Introduction
- Syllabus
- Data Mining Concepts
- Team Organization

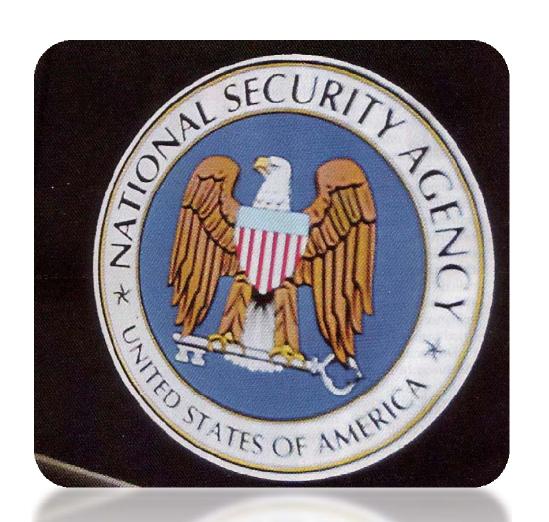
Introduction Session

- Your name and major
- The definition of data mining
- Your expectation from this course

Course Syllabus

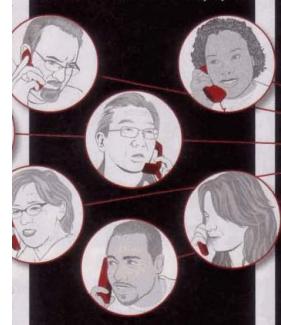
Syllabus

Data Mining Applications



Classes of Data-Mining Applications in 2003

Data-Mining Applications	Percentage
Banking	13
Bioinformatics/biotech	10
Direct marketing/fundraising	10
Fraud detection	9
Scientific data	9
Insurance	8
Telecommunication	8
Medical/pharmaceuticals	6
Retail	6
e-Commerce/Web	5
Other	4
Investment/stocks	3
Manufacturing	2
Security	2
Supply chain analysis	2
Travel	2
Entertainment	1



AS AMERICA CALLS.....THE NSA COLLECTS

We're making billions of calls each day on landlines, on mobile phones and over the Internet. E'he NSA—the U.S.'s largest intelligence organization—has stepped up efforts to intercept more call options also make it easier for suspected terrorists' communications to go undetectuspicious electronic chatter. But can amassing records of every U.S. phone call help?

Phone companies collect detailed log information on each of the billions of cellular and landline phone calls made by their customers—to people next door, across America and worldwide—every day.

More than 500 billion landline phone calls were made in the U.S. in 2005. That's 2 trillion minutes on the phone.

2 THE PHONE COMPANIE 3

According to USA Today, three phone companies supply records of their customers' calls to the NSA.* The data: phone numbers, call length and whether calls were incoming or outgoing.

AT&T: It has 49 million customers and owns Cingular Wireless with BellSouth.

BELLSOUTH: It has 21 million landline customers in the Southeastern U.S.

VERIZON: Its 100 million wireless and landline customers live in 28 states.

3 THE NSA DATABASE

Billions of individual call records may be put into one massive NSA database. Though personal details are reportedly not included, this information could be attained by cross-referencing numbers with other databases.

The NSA program reportedly does not include listening to phone calls made

4 THE DATA MINING

It's unclear precisely how the NSA database program operates, and the agency isn't talking. Still, experts are speculating on several different ways that the data mining and analysis might work.

PATTERN RECOGNITION:

Like credit - card companies fighting fraud by looking for unusual charges, the NSA could look for suspicious call patterns consistent with terrorists' communications.

SOCIAL-NETWORK ANALYSIS:

Starting with a suspected terrorist's number, the NSA could construct a complex web of contacts by tracing who calls whom—potentially discovering new associations,

COMBINING DATABASES:

Analysts could mix the data with public records or private databases—DMV records, Internet activity—to track suspicious names and activities.

Market Basket Analysis

Ń O O (a) caffeine (b) thesal

0

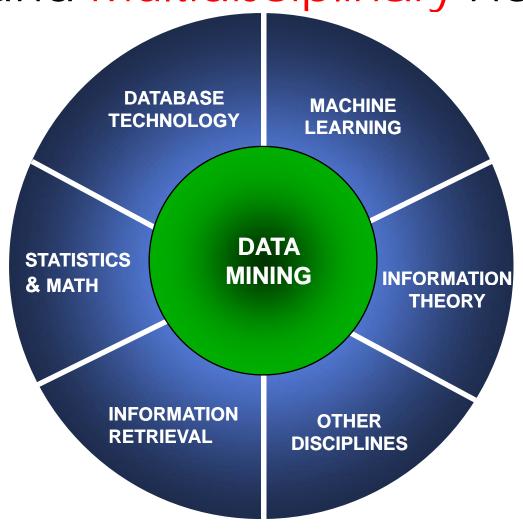
(c) viagra

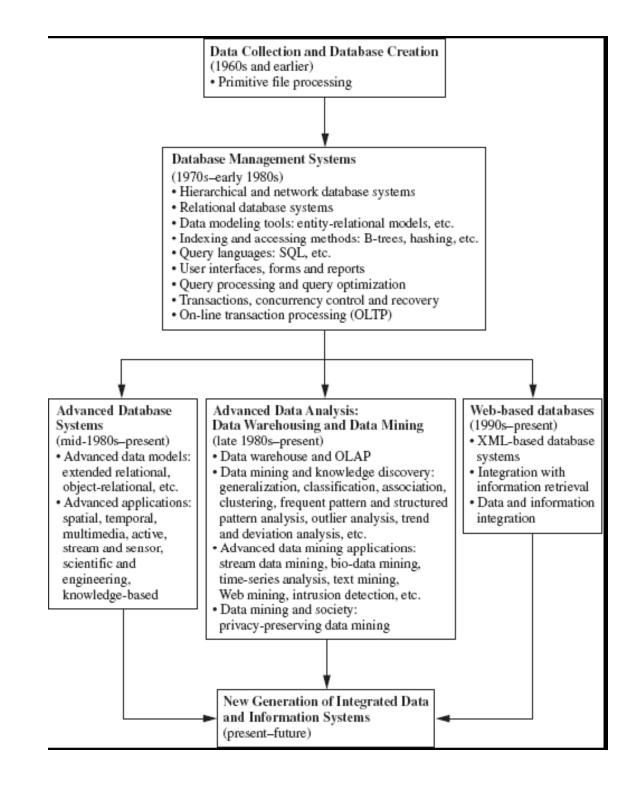
Figure 9.14 A Chemical database.

Chemistry Informatics

What is Data Mining?

Source: Cover page of *Advanced in Knowledge Discovery and Data Mining* , edited by U. Fayyad, G. Piatesky-Shapiro, P. Smyth and R. Uthurusamy, MIT Press


How Much Information in 2003


 http://www.sims.berkeley.edu/research/proje cts/how-much-info-2003/

What is Data Mining?

- Misnomer??
- Gold Mining vs. Sand (Rock) Mining
- Knowledge Discovery from Data (KDD)
- Knowledge extraction
- Data/pattern analysis
- Data archaeology
- Data dredging

Data Mining is an Interdisciplinary and Multidisciplinary Field

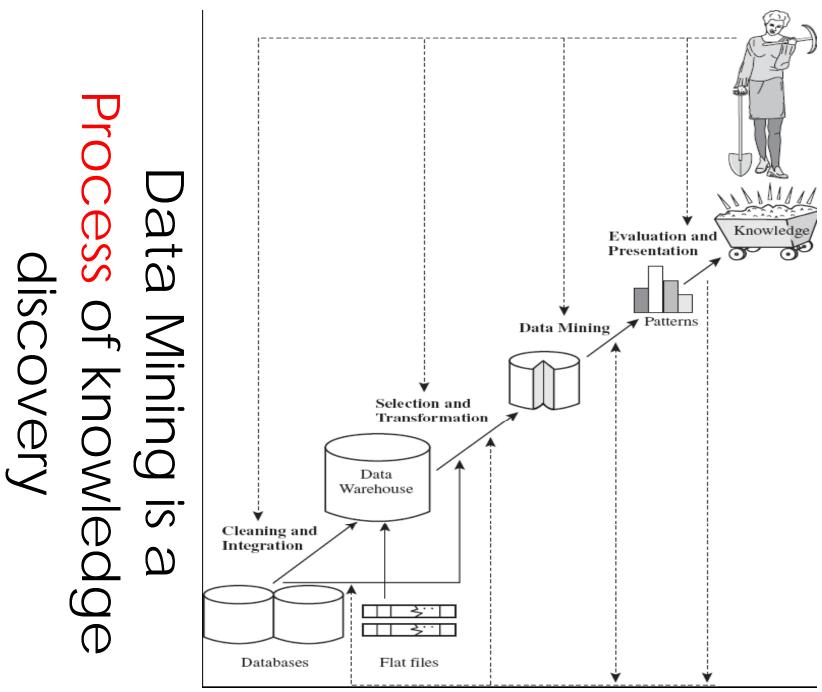


Figure 1.4 Data mining as a step in the process of knowledge discovery

Architecture of a Data Mining System

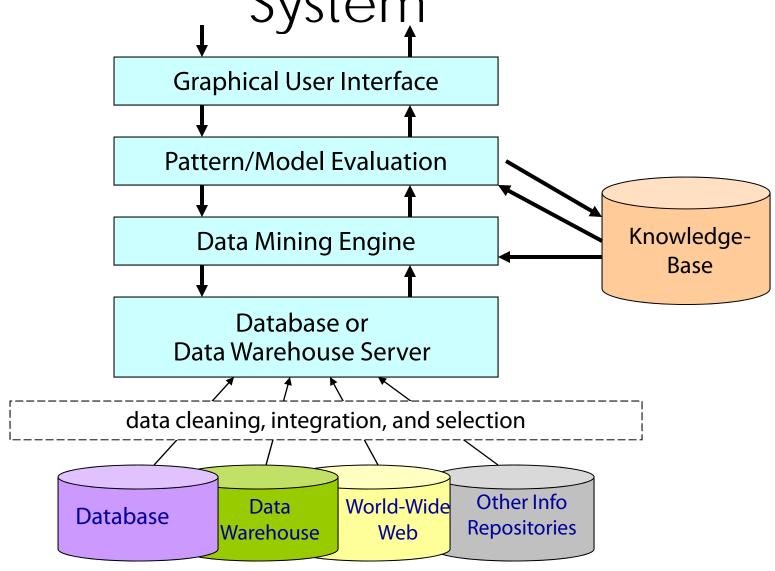
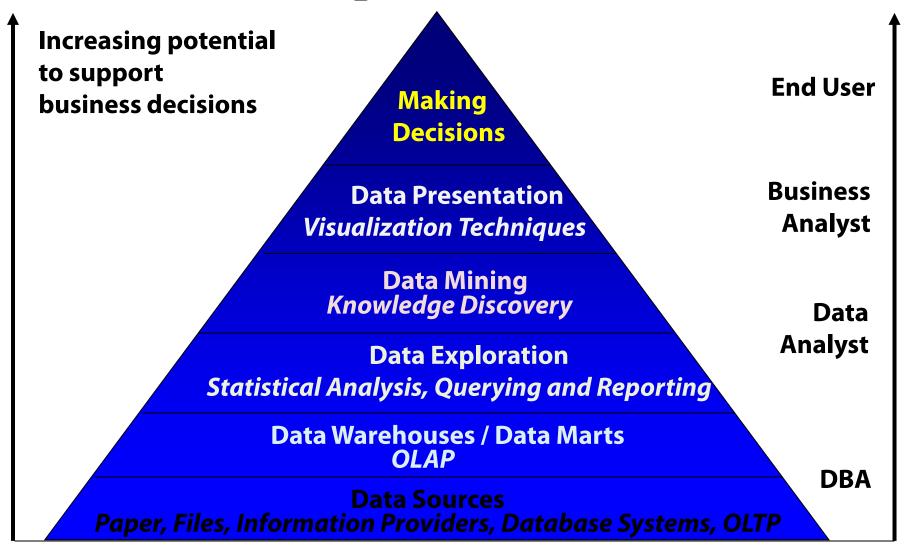



Figure 1.5 Architecture of a typical data mining system

Data Mining and Stakeholders

Data Types - Perspective on Structure

- Structured
- Semi-structured
- Unstructured

Structured Data (1)

- Data is organized in semantic entities
- Similar entities are grouped together (relations or classes)
- Entities in the same group have the same descriptions (attributes, features)

Structured Data (2)

- Descriptions for all entities in a group (schema)
- Attributes
 - Have same defined formats
 - Have predefined lengths
 - Follow same orders

Semi-structured Data (1)

- Semi-structured data are organized in semantic entities
- Similar entities are grouped together
- Entities in same group may not have same attributes

Semi-structured Data (2)

Attributes

- Order of attributes not necessarily important
- Not all attributes may be required
- Size of same attributes in a group may differ
- Type of same attributes in a group may differ

XML

```
<bank-1>
   <customer>
           <customer_name> Hayes </customer_name>
           <customer_street> Main </customer_street>
           <customer_city> Harrison </customer_city>
           <account>
                          <account_number> A-102 </account_number>
                          <branch_name> Perryridge </branch_name>
                          <balance> 400 </balance>
           </account>
            <account>
           </account>
   </customer>
</bank-1>
```

Unstructured Data (1)

- Masses of computerized data
 - which do not have a data structure
 - which is easily readable by a machine

Unstructured Data (2)

"Merrill Lynch estimates that more than 85 percent of all business information exists as unstructured data—commonly appearing in e-mails, memos, notes from call centers and support operations, news, user groups, chats, reports, letters, surveys, white papers, marketing material, research, presentations and Web pages."-- DM Review Magazine, February 2003 Issue

Data Types – Perspective on Representation

- Numeric and categorical
- Quantitative and qualitative
- Nominal and ordinal
- Static and dynamic (temporal)

Numeric and Categorical Data (1)

- Numeric data
 - Real number data, integer number data
 - Properties
 - Order relations (2 < 5)
 - Distance relation (d(2.3, 4.2) = 1.9)
 - Equality relation (2 = 2)

Numeric and Categorical Data (2)

- Categorical (symbolic) values
 - Equality relation
 - Blue = Blue or Rea <> Blue
 - Categorical values can be converted to a numeric values
 - Gender (male, female) \rightarrow (0, 1)

Quantitative and Qualitative Data

- Quantitative data
 - Numeric values are quantitative values
 - Height, weight, salary
- Qualitative data
 - Nominal
 - Ordinal

Nominal Data

- Utility customer type (residential, commercial, industrial, governmental)
- Use different symbols, characters, and numbers
- These values can be coded alphabetically as A,
 B, and C, or numerically as 1, 2, and 3
- Order-less

Ordinal Data

- The rank of the student in a class
- Ordinal variables is a categorical variable for which an order relation is defined but not a distance relation
- The ordered scale need not be necessarily linear; difference between 4th and 5th students are different to that of 14th and 15th students

Static and Dynamic Data

- Static data
 - Attribute values do not change with time
- Dynamic data
 - Attribute values change with time

Data Repositories

- Transactional database
- Relational database
- Data warehouse
- Advanced database
- Data stream
- The World Wide Web

Transactional Database

TID	List of item_IDs
T100	I1, I2, I5
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Table 5.1 Transactional data for an AllElectronics branch

Figure 1.6. Fragments of Relations From a Relational Database for AllElectronics

customer

cust_ID	name	address	age	income	credit_info	category	
C1	Smith, Sandy	1223 Lake Ave., Chicago, IL	31	\$78000	1	3	

item

<u>item_ID</u> n	name	brand	category	type	price	place_made	supplier	cost
	hi-res-TV	Toshiba	high resolution	TV	\$988.00	Japan	NikoX	\$600.00
	Laptop	Dell	laptop	computer	\$1369.00	USA	Dell	\$983.00

employee

empl_ID	name	category	group	salary	commission
E55	Jones, Jane	home entertainment	manager	\$118,000	2%

branch

branch_ID	пате	address
B1	City Square	396 Michigan Ave., Chicago, IL
		• • •

purchases

trans_!D	cust_ID	empl_!D	date	time	method_paid	amount
T100	C1	E55	03/21/2005	15:45	Visa	\$1357.00

items_sold

trans_ID	item_ID	qty
T100	13	1
T100	I8	2

works_at

empl_!D	branch_ID
E55	B 1

Data Warehouse (Mart)

Figure 1.7 Typical framework of a data warehouse for AllElectronics

Feature	OLTP	OLAP
Characteristic	operational processing	informational processing
Orientation	transaction	analysis
User	clerk, DBA, database professional	knowledge worker (e.g., manager, executive, analyst)
Function	day-to-day operations	long-term informational requirements,
		decision support
DB design	ER based, application-oriented	star/snowflake, subject-oriented
Data	current; guaranteed up-to-date	historical; accuracy maintained over time
Summarization	primitive, highly detailed	summarized, consolidated
View	detailed, flat relational	summarized, multidimensional
Unit of work	short, simple transaction	complex query
Access	read/write	mostly read
Focus	data in	information out
Operations	index/hash on primary key	lots of scans
Number of records accessed	tens	millions
Number of users	thousands	hundreds
DB size	100 MB to GB	100 GB to TB
Priority	high performance, high availability	high flexibility, end-user autonomy
Metric	transaction throughput	query throughput, response time

 Table 3.1 Comparison between OLTP and OLAP systems

Star Schema of a Data Warehouse for Sales

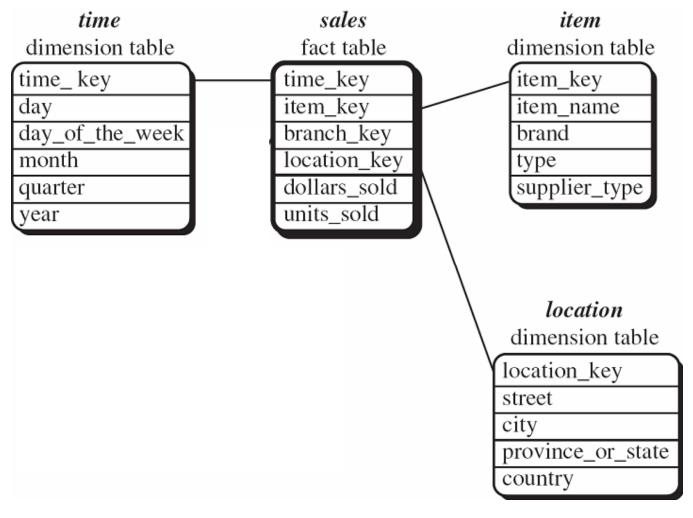
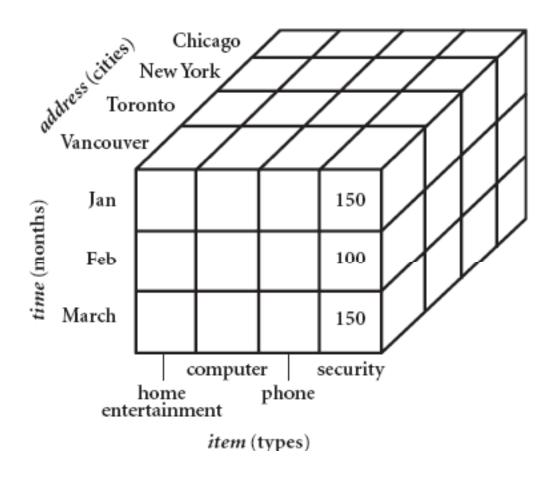



Figure 3.4 Star schema of a data warehouse for sales

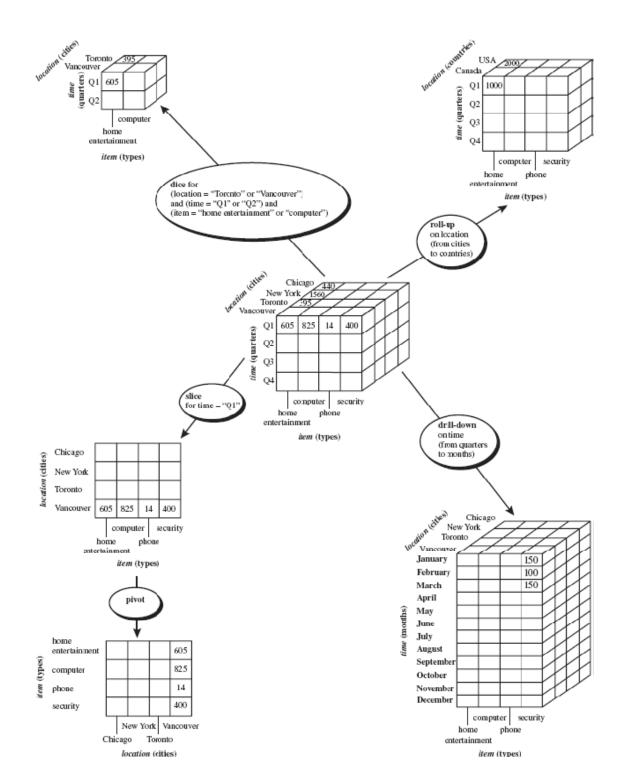

	locatio	n = ``Ch	icago"		<i>location</i> = "New York"			location = "Toronto"			<i>location</i> = "Vancouver"					
t	t item				item			item			item					
i m e	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.
Q1 Q2 Q3 Q4	854 943 1032 1129	882 890 924 992	89 64 59 63	623 698 789 870	1087 1130 1034 1142	968 1024 1048 1091	38 41 45 54	872 925 1002 984	818 894 940 978	746 769 795 864	43 52 58 59	591 682 728 784	605 680 812 927	825 952 1023 1038	14 31 30 38	400 512 501 580

Table 3.3 A 3-D view of sales data for *AllElectronics*, according to the dimensions *time*, *item*, and *location*. The measure displayed is *dollar_sold* (in thousands).

Data Cube for Sales

Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions *time*, *item*, and *location*. The measure displayed is *dollar_sold* (in thousands).

commonly used for data operations 3.10. Examples of multidimensional warehousing data cube,

Advanced Databases

- Object-relational databases
- Temporal databases
- Sequence databases
- Time-series databases
- Spatial databases
- Saptio-temporal databases
- Text databases
- Heterogeneous databases

Data Streams

 The features of data stream: huge or possibly infinite volume, dynamically changing, flowing in and out in a fixed order, allowing only one or a small number of scans, and demanding fast (often real-time) response time

The World Wide Web (1)

 The WWW serves a huge, distributed, global information service center for news, advertisements, consumer information, financial management, education, government, e-commerce, and many other information services

The WWW (2)

- The challenges for KD
 - Size
 - Complexity
 - Dynamic
 - Diversity
 - Relevance

Lab Activities

- Introduction to R
- Organize your team
 - Each team consist of three (four) students
 - Email your team information (names and email addresses) to the instructor by the end of today's lab session
- Read the chapter 2 of the lecture text book and do team homework assignment #1
- Read the chapters 1, 2 and 3 of the lab text book
- Brainstorm on the topic of you group project

(Team) Homework Assignment #1

- Do Example 2.1, 2.6, 2.7, and Exercise 2.18.
 Note that you need to use R for 2.18 (b).
- Prepare for the results of the homework assignment
- Due date
 - beginning of the lecture on Friday February 4th.

Next Week Topics

- Data types and data repositories (Section 1.3)
- Data preprocessing (Ch. 2)